Dynamic Polarization Patterning Technique for High-Quality Liquid Crystal Planar Optics
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Komanduri, R.K.; Escuti, M.J. High efficiency reflective liquid crystal polarization gratings. Appl. Phys. Lett. 2009, 95, 091106. [Google Scholar] [CrossRef]
- Lin, T.; Xie, J.; Zhou, Y.; Zhou, Y.; Yuan, Y.; Fan, F.; Wen, S. Recent advances in photoalignment liquid crystal polarization gratings and their applications. Crystals 2021, 11, 900. [Google Scholar] [CrossRef]
- De Sio, L.; Tabiryan, N.; McConney, M.; Bunning, T.J. Cycloidal diffractive waveplates fabricated using a high-power diode-pumped solid-state laser operating at 532 nm. J. Opt. Soc. Am. B 2019, 36, D136–D139. [Google Scholar] [CrossRef]
- Tabiryan, N.V.; Serak, S.V.; Nersisyan, S.R.; Roberts, D.E.; Zeldovich, B.Y.; Steeves, D.M.; Kimball, B.R. Broadband waveplate lenses. Opt. Express 2016, 24, 7091–7102. [Google Scholar] [CrossRef] [PubMed]
- Serak, S.V.; Roberts, D.E.; Hwang, J.Y.; Nersisyan, S.R.; Tabiryan, N.V.; Bunning, T.J.; Steeves, D.M.; Kimball, B.R. Diffractive waveplate arrays. J. Opt. Soc. Am. B 2017, 34, B56–B63. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Z.; Qi, Y.; Zhang, X.; WEI, Q.H. Pancharatnam–Berry optical lenses. J. Opt. Soc. Am. B 2019, 36, D107–D111. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Z.; Liu, H.; Ye, M. Design of tunable liquid crystal lenses with a parabolic phase profile. Crystals 2022, 13, 8. [Google Scholar] [CrossRef]
- Chen, P.; Ma, L.L.; Duan, W.; Chen, J.; Ge, S.J.; Zhu, Z.H.; Tang, M.J.; Xu, R.; Gao, W.; Li, T.; et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater. 2018, 30, 1705865. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Chen, P.; Ge, S.J.; Wei, B.Y.; Hu, W.; Lu, Y.Q. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals. Opt. Express 2017, 25, 14059–14064. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wei, B.Y.; Hu, W.; Lu, Y.Q. Liquid-Crystal-Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. Adv. Mater. 2020, 32, 1903665. [Google Scholar] [CrossRef] [PubMed]
- Tabiryan, N.V.; Roberts, D.E.; Liao, Z.; Hwang, J.Y.; Moran, M.; Ouskova, O.; Pshenichnyi, A.; Sigley, J.; Tabirian, A.; Vergara, R.; et al. Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses. Adv. Opt. Mater. 2021, 9, 2001692. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Li, Y.; Liu, S.; Chen, S.; Su, Y. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal. Opt. Express 2019, 27, 22522–22531. [Google Scholar] [CrossRef] [PubMed]
- De Sio, L.; Roberts, D.E.; Liao, Z.; Nersisyan, S.; Uskova, O.; Wickboldt, L.; Tabiryan, N.; Steeves, D.M.; Kimball, B.R. Digital polarization holography advancing geometrical phase optics. Opt. Express 2016, 24, 18297–18306. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhan, T.; Wu, S.T. Flat cholesteric liquid crystal polymeric lens with low f-number. Opt. Express 2020, 28, 5875–5882. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Lee, Y.H.; Wu, S.T. High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses. Opt. Express 2018, 26, 4863–4872. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Xiong, J.; Lee, Y.H.; Wu, S.T. Polarization-independent Pancharatnam-Berry phase lens system. Opt. Express 2018, 26, 35026–35033. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Xiong, J.; He, Z.; Wu, S.T. Patterning liquid-crystal alignment for ultrathin flat optics. ACS Omega 2020, 5, 31485–31489. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Zheng, J. Fingerprint sensor using a polymer dispersed liquid crystal holographic lens. Appl. Opt. 2010, 49, 4763–4766. [Google Scholar]
- Zhang, X.J.; Zhou, X.; Yang, Z.X.; Zhang, L.X.; Huang, W.; Chen, L. High-throughput and controllable manufacturing of liquid crystal polymer planar microlens array for compact fingerprint imaging. Opt. Express 2022, 30, 3101–3112. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Hsiang, E.L.; He, Z.; Zhan, T.; Wu, S.T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light. Sci Appl. 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Hsiang, E.L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.C.; Lin, C.L.; Wu, S.T. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light. Sci Appl. 2022, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bermak, A.; Boussaid, F.; Chigrinov, V.G. Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum. Opt. Express 2010, 18, 17776–17787. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.X.; Shou, Q.L.; Zhou, X.; Zhang, X.J.; Huang, W.; Chen, L. Wide field of view chiral imaging with a liquid crystal planar lens enabled by digitalized nanogratings. Opt. Express 2022, 30, 44864–44877. [Google Scholar] [CrossRef] [PubMed]
- García de Blas, M.; Geday, M.A.; Otón, J.M.; Arregui, X.Q. Two-dimensional digital beam steering based on liquid crystal phase gratings. Appl. Sci. 2021, 11, 3632. [Google Scholar] [CrossRef]
- Gou, F.; Peng, F.; Ru, Q.; Lee, Y.H.; Chen, H.; He, Z.; Zhan, T.; Vodopyanov, K.L.; Wu, S.T. Mid-wave infrared beam steering based on high-efficiency liquid crystal diffractive waveplates. Opt. Express 2017, 25, 22404–22410. [Google Scholar] [CrossRef]
- Slussarenko, S.; Francescangeli, O.; Simoni, F. High resolution polarization gratings in liquid crystals. Appl. Phys. Lett. 1997, 71, 3613–3615. [Google Scholar] [CrossRef]
- Zhan, T.; Xiong, J.; Lee, Y.H.; Chen, R.; Wu, S.T. Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography. Opt. Express 2019, 27, 2632–2642. [Google Scholar] [CrossRef]
- He, Z.; Yin, K.; Wu, S.T. Standing wave polarization holography for realizing liquid crystal Pancharatnum-Berry phase lenses. Opt. Express 2020, 28, 21729–21736. [Google Scholar] [CrossRef] [PubMed]
- Presnyakov, V.; Asatryan, K.; Galstian, T.; Chigrinov, V. Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer. Opt. Express 2006, 14, 10558–10564. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Hu, W.; Hu, H.C.; Lin, X.W.; Zhu, G.; Choi, J.W.; Chigrinov, V.; Lu, Y.Q. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express 2012, 20, 16684–16689. [Google Scholar] [CrossRef]
- Duan, W.; Chen, P.; Ge, S.J.; Liang, X.; Hu, W. A fast-response and helicity-dependent lens enabled by micro-patterned dual-frequency liquid crystals. Crystals 2019, 9, 111. [Google Scholar] [CrossRef]
- Miskiewicz, M.N.; Escuti, M.J. Direct-writing of complex liquid crystal patterns. Opt. Express 2014, 22, 12691–12706. [Google Scholar] [CrossRef] [PubMed]
- Miskiewicz, M.N.; Escuti, M.J. Optimization of direct-write polarization gratings. Opt. Eng. 2015, 54, 025101. [Google Scholar] [CrossRef]
- Kim, J.; Li, Y.; Miskiewicz, M.N.; Oh, C.; Kudenov, M.W.; Escuti, M.J. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2015, 2, 958–964. [Google Scholar] [CrossRef]
- Meng, Z.; Huang, W.; Zhang, L.X.; Zhou, X.; Zhao, K.; Pu, D.; Chen, L. Large aperture and defect-free liquid crystal planar optics enabled by high-throughput pulsed polarization patterning. Opt. Express 2023, 31, 30435–30445. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K. The phase Fresnel lens. J. Opt. Soc. Am. 1961, 51, 17–20. [Google Scholar] [CrossRef]
- Honma, M.; Nose, T. Liquid-crystal Fresnel zone plate fabricated by microrubbing. Jpn. J. Appl. Phys. 2005, 44, 287. [Google Scholar] [CrossRef]
- Xu, Q.; Sun, T.; Wang, C. Coded liquid crystal metasurface for achromatic imaging in the broadband wavelength range. ACS Appl. Nano. Mater. 2021, 4, 5068–5075. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Zhao, K.; Zhang, X.-j.; Zhou, X.; Huang, W.; Chen, L. Dynamic Polarization Patterning Technique for High-Quality Liquid Crystal Planar Optics. Photonics 2024, 11, 350. https://doi.org/10.3390/photonics11040350
Qin X, Zhao K, Zhang X-j, Zhou X, Huang W, Chen L. Dynamic Polarization Patterning Technique for High-Quality Liquid Crystal Planar Optics. Photonics. 2024; 11(4):350. https://doi.org/10.3390/photonics11040350
Chicago/Turabian StyleQin, Xinwei, Keyang Zhao, Xin-jun Zhang, Xiaohong Zhou, Wenbin Huang, and Linsen Chen. 2024. "Dynamic Polarization Patterning Technique for High-Quality Liquid Crystal Planar Optics" Photonics 11, no. 4: 350. https://doi.org/10.3390/photonics11040350
APA StyleQin, X., Zhao, K., Zhang, X.-j., Zhou, X., Huang, W., & Chen, L. (2024). Dynamic Polarization Patterning Technique for High-Quality Liquid Crystal Planar Optics. Photonics, 11(4), 350. https://doi.org/10.3390/photonics11040350