Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer
Abstract
1. Introduction
2. Theoretical Analysis of BG Beams
Principle of Generation of BG Beams
3. Interference of BG Beams with Reference Beams
3.1. Bessel Beam Interference with Gaussian Beam
- A.
- In-line interference
- B.
- Off-axis interference
3.2. Interference of BG Beams with Spherical Beams
- A.
- In-line interference of the Bessel beam with a spherical beam
4. BG Beam Interference with Its Copy
4.1. In-Line Interference of the Bessel Beam with Its Conjugate
4.2. Off-Axis Interference of the Bessel Beam with Its Conjugate
4.3. Self-Referencedinterference of BG Beams with TheirLaterally Displaced and Misaligned Amplitude-Split Copies
- A.
- Lateral displacement and tilt in the same direction
- B.
- Lateral displacement and tilt in the orthogonal direction
5. Verifying Propagation Propertiesand the TC of Phase-Truncated BG Beams
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouchal, Z. Resistance of nondiffracting vortex beams to amplitude and phase perturbations. Opt. Commun. 2002, 210, 155–164. [Google Scholar] [CrossRef]
- Tao, S.H.; Yuan, X. Self-reconstruction property of fractional Bessel beams. J. Opt. Soc. Am. A 2004, 21, 1192–1197. [Google Scholar] [CrossRef]
- Fischer, P.; Little, H.; Smith, R.L.; Lopez-Mariscal, C.; Brown, C.T.A.; Sibbett, W.; Dholakia, K. Wavelength dependent propagation and reconstruction of white light Bessel beams. J. Opt. A 2006, 8, 477–482. [Google Scholar] [CrossRef]
- Chu, X. Analytical study on the self-healing property of Bessel beam. Eur. Phys. J. D 2012, 66, 259. [Google Scholar] [CrossRef]
- Bouchal, Z.; Wagner, J.; Chlup, M. Self-reconstruction of a distorted nondiffracting beam. Opt. Commun. 1998, 151, 207–211. [Google Scholar] [CrossRef]
- Yu, A.; Wu, G. Self-healing properties of optical pin beams. J. Opt. Soc. Am. A 2023, 40, 2078–2083. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, W.; Wang, L.; Li, W.; Gong, L.; Cheng, W.; Chen, H.; Gruska, J. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment. Sci. Rep. 2019, 9, 2025. [Google Scholar] [CrossRef]
- Yuan, Y.; Lei, T.; Li, Z.; Li, Y.; Gao, S.; Xie, Z.; Yuan, X. Beam wander relieved orbital angular momentum communication in turbulent atmospheric using Bessel beams. Sci. Rep. 2017, 7, 42276. [Google Scholar] [CrossRef]
- Otte, E.; Nape, I.; Guzman, C.R.; Valles, A.; Denz, C.; Forbes, A. Recovery of nonseparability in self-healing vector Bessel beams. Phy. Rev. A 2018, 98, 053818. [Google Scholar] [CrossRef]
- Aiello, A.; Agarwal, G.S.; Paur, M.; Stoklasa, B.; Hradil, Z.; Rehacek, J.; Hoz, P.D.L.; Leuchs, G.; Soto, L.L.S. Unraveling beam self-healing. Opt. Express 2017, 25, 19147–19157. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel beam: Significance and applications-A progressive review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Duocastella, M.; Arnold, C.B. Bessel and annular beams for material processing. Laser Photon. Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Stoian, R.; Bhuyan, M.K.; Zhang, G.; Cheng, G.; Meyer, R.; Courvoisier, F. Ultrafast Bessel beams: Advanced tools for laser material processing. Adv. Opt. Technol. 2018, 7, 165. [Google Scholar] [CrossRef]
- Li, S.; Wang, J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Sci. Rep. 2017, 7, 43233. [Google Scholar] [CrossRef]
- Nape, A.; Otte, E.; Valles, A.; Guzman, C.R.; Cardano, F.; Denz, C.; Forbes, A. Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states. Opt. Express 2018, 26, 26946–26960. [Google Scholar] [CrossRef]
- Lu, Z.; Guo, Z.; Fan, M.; Guo, M.; Li, C.; Yao, Y.; Zhang, H.; Lin, W.; Liu, H.; Liu, B. Tunable bessel beam shaping for robust atmospheric optical communication. J. Light. Technol. 2022, 40, 5097–5106. [Google Scholar] [CrossRef]
- Chavez, V.G.; Mcgloin, D.; Melville, H.; Sibbett, W.; Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 2002, 419, 145–147. [Google Scholar] [CrossRef]
- Planchon, T.A.; Gao, L.; Milkie, D.E.; Davidson, M.W.; Galbraith, J.A.; Betzig, E. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 2011, 8, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Arlt, J.; Dholakia, K. Generation of high-order Bessel beams by use of an axicon. Opt. Commun. 2000, 177, 297–301. [Google Scholar] [CrossRef]
- Butt, M.A.; Savelyev, D. Bessel beams produced by axicon and spatial light modulator: A brief analysis. In Proceedings of the 2021 International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 20–24 September 2021. [Google Scholar]
- Vasara, A.; Turunen, J.; Friberg, A.T. Realizing of general nondiffracting beams with computer-generated hologram. J. Opt. Soc. Am. A 1989, 6, 1748–1754. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Cheng, Z.; Lv, Q.; Wang, X. Tunable axicons generated by spatial light modulator with high-level phase computer-generated holograms. Appl. Sci. 2020, 10, 5127. [Google Scholar] [CrossRef]
- Tudor, R.; Bulzan, G.A.; Kusko, M.; Kusko, C.; Avramescu, V.; Vasilache, D.; Gavrila, R. Multilevel spiral axicon for high-order Bessel-Gauss beams generation. Nanomaterials 2023, 13, 579. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhou, K.; Fang, G.; Liu, Z.; Liu, S. Generation of spiraling high-order Bessel beams. Appl. Phys. B 2011, 104, 215–221. [Google Scholar] [CrossRef]
- Qi, M.Q.; Tang, W.X.; Cui, T.J. A broadband Bessel beam launcher using metamaterial lens. Sci. Rep. 2015, 5, 11732. [Google Scholar]
- Cox, A.J.; Dibble, D.C. Nondiffracting beam from a spatially filtered Fabry–Perot resonator. JOSA A 1992, 9, 282–286. [Google Scholar] [CrossRef]
- Horvath, Z.L.; Erdélyi, M.; Szabo, G.; Bor, Z.; Tittel, F.K.; Cavallaro, J.R. Generation of nearly nondiffracting Bessel beams with a Fabry-Perot interferometer. JOSA A 1997, 14, 3009–3013. [Google Scholar] [CrossRef]
- Reddy, V.; Bertoncini, A.; Liberale, C. 3D-printed fiber-based zeroth-and high-order Bessel beam generator. Optica 2022, 9, 645–651. [Google Scholar] [CrossRef]
- Rao, A.S. Origin, Experimental Realization, Illustrations, and Applications of Bessel beams: A Tutorial Review. arXiv 2024, arXiv:2401.04307. [Google Scholar]
- Baliyan, M.; Shikder, A.; Nishchal, N.K. Generation of structured light beams by dual phase modulation with a single spatial light modulator. Phys. Scr. 2023, 98, 105528. [Google Scholar] [CrossRef]
- Baliyan, M.; Nishchal, N.K. Generating scalar and vector modes of Bessel beams utilizing holographic axicon phase with spatial light modulator. J. Opt. 2023, 25, 095702. [Google Scholar] [CrossRef]
- Durnin, J. Exact solutions for nondiffracting beams. I. Scalar Theory J. Opt. Soc. Am. A 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Durnin, J. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499–1501. [Google Scholar] [CrossRef]
- Berry, M.V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 2004, 6, 259–268. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Volyar, A.V. Topological charge of a linear combination of optical vortices: Topological competition. Opt. Express 2020, 28, 8266–8281. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Ferreira, Q.S.; Jesus-Silva, A.J.; Fonseca, E.J.; Hickmann, J.M. Fraunhofer diffraction of light with orbital angular momentum by a slit. Opt. Lett. 2011, 36, 3106–3108. [Google Scholar] [CrossRef]
- Sztul, H.I.; Alfano, R.R. Double-slit interference with Laguerre-Gaussian beams. Opt. Lett. 2006, 31, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Hickmann, M.; Fonseca, E.J.S.; Soares, W.C.; Chávez-Cerda, S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 2010, 105, 053904. [Google Scholar] [CrossRef]
- Alperin, S.N.; Niederriter, R.D.; Gopinath, J.T.; Siemens, M.E. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt. Lett. 2016, 41, 5019–5022. [Google Scholar] [CrossRef]
- Vaity, P.; Banerji, J.; Singh, R.P. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys. Lett. A 2013, 377, 1154–1156. [Google Scholar] [CrossRef]
- Bazhenov, V.Y.; Vasnetsov, M.V.; Soskin, M.S. Laser beam with screw dislocations in their wavefronts. Pis’ma Zh. Eksp. Teor. Fiz. 1990, 52, 1037–1039, Erratum in JETP Lett. 1990, 52, 429–431. [Google Scholar]
- Pan, S.; Pei, C.; Liu, S.; Wei, J.; Wu, D.; Liu, Z.; Yin, Y.; Xia, Y.; Yin, J. Measuring orbital angular momentums of light based on petal interference patterns. OSA Contin. 2018, 1, 451–461. [Google Scholar] [CrossRef]
- Senthilkumaran, P.; Masajada, J.; Sato, S. Interferometry with vortices. Int. J. Opt. 2011, 2012, 517591. [Google Scholar] [CrossRef]
- Lan, B.; Liu, C.; Rui, D.; Chen, M.; Shen, F.; Xian, H. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry. Phys. Scr. 2019, 94, 055502. [Google Scholar] [CrossRef]
- Fedorov; Gavril’eva, K.; Gorelaya, A.; Sevryugin, A.; Tursunov, I.; Venediktov, D.; Venediktov, V. Reference beam lacking measurement of topological charge of incoming vortex beam. Proc. SPIE 2019, 11030, 1103002. [Google Scholar]
- Ghai, P.; Vyas, S.; Senthilkumaran, P.; Sirohi, R.S. Detection of phase singularity using a lateral shear interferometer. Opt. Lasers Eng. 2008, 46, 419–423. [Google Scholar] [CrossRef]
- Ghai, P.; Senthilkumaran, P.; Sirohi, R.S. Shearograms of an optical phase singularity. Opt. Commun. 2008, 281, 1315–1322. [Google Scholar] [CrossRef]
- Kumar, P.; Nishchal, N.K. Self-referenced interference of laterally displaced vortex beams for topological charge determination. Opt. Commun. 2020, 459, 125000. [Google Scholar] [CrossRef]
- Cui, S.; Xu, B.; Luo, S.; Xu, H.; Cai, Z.; Luo, Z.; Pu, J.; Chávez-Cerda, S. Determining topological charge based on an improved Fizeau interferometer. Opt. Express 2019, 27, 12774–12779. [Google Scholar] [CrossRef]
- Li, X.; Tai, Y.; Zhang, L.; Nie, Z.; Chen, Q. High-order topological charges measurement of LG vortex beams with a modified Mach-Zehnder interferometer. Optik 2015, 126, 4378–4381. [Google Scholar]
- Guo, J.; Guo, B.; Fan, R.; Zhang, W.; Wang, Y.; Zhang, L.; Zhang, P. Measuring topological charges of Laguerre–Gaussian vortex beams using two improved Mach-Zehnder interferometers. Opt. Eng. 2016, 55, 035104. [Google Scholar] [CrossRef]
- Kumar, P.; Nishchal, N.K. Modified Mach–Zehnder interferometer for determining the high-order topological charge of Laguerre-Gaussian vortex beams. J. Opt. Soc. Am. A 2020, 36, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Volyar, A.; Abramochkin, E.; Egorov, Y.; Bretsko, M.; Akimova, Y. Fine structure of perturbed Laguerre-Gaussian beams: Hermite-Gaussian mode spectra and topological charge. Appl. Opt. 2020, 59, 7680–7687. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baliyan, M.; Nishchal, N.K. Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer. Photonics 2024, 11, 263. https://doi.org/10.3390/photonics11030263
Baliyan M, Nishchal NK. Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer. Photonics. 2024; 11(3):263. https://doi.org/10.3390/photonics11030263
Chicago/Turabian StyleBaliyan, Mansi, and Naveen K. Nishchal. 2024. "Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer" Photonics 11, no. 3: 263. https://doi.org/10.3390/photonics11030263
APA StyleBaliyan, M., & Nishchal, N. K. (2024). Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer. Photonics, 11(3), 263. https://doi.org/10.3390/photonics11030263