Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Shen, Y.; Wang, J. From Terahertz Imaging to Terahertz Wireless Communications. Engineering 2023, 22, 106–124. [Google Scholar] [CrossRef]
- Roh, Y.; Lee, S.-H.; Kwak, J.; Song, H.S.; Shin, S.; Kim, Y.K.; Wu, J.W.; Ju, B.-K.; Kang, B.; Seo, M. Terahertz imaging with metamaterials for biological applications. Sens. Actuators B Chem. 2022, 352, 130993. [Google Scholar] [CrossRef]
- Yang, S.; Ding, L.; Wang, S.; Du, C.; Feng, L.; Qiu, H.; Zhang, C.; Wu, J.; Fan, K.; Jin, B.; et al. Studying Oral Tissue via Real-Time High-Resolution Terahertz Spectroscopic Imaging. Phys. Rev. Appl. 2023, 19, 034033. [Google Scholar] [CrossRef]
- Serghiou, D.; Khalily, M.; Brown, T.W.C.; Tafazolli, R. Terahertz Channel Propagation Phenomena, Measurement Techniques and Modeling for 6G Wireless Communication Applications: A Survey, Open Challenges and Future Research Directions. IEEE Commun. Surv. Tutor. 2022, 24, 1957–1996. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J. Active metamaterials and metadevices: A review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Szabó, Z.; Füzi, J. Equivalence of Magnetic Metamaterials and Composites in the View of Effective Medium Theories. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Park, C.M.; Lee, S.H. Zero-reflection acoustic metamaterial with a negative refractive index. Sci. Rep. 2019, 9, 3372. [Google Scholar] [CrossRef] [PubMed]
- Padilla, W.J.; Basov, D.N.; Smith, D.R. Negative refractive index metamaterials. Mater. Today 2006, 9, 28–35. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Özkan Alkurt, F.; Awl, H.N.; Muhammadsharif, F.F.; Bakır, M.; Dalgac, S.; Karaaslan, M.; Luo, H. An ultrathin and dual band metamaterial perfect absorber based on ZnSe for the polarization-independent in terahertz range. Results Phys. 2021, 26, 104344. [Google Scholar] [CrossRef]
- Jen, Y.-J.; Liu, W.-C.; Chen, T.-K.; Lin, S.-w.; Jhang, Y.-C. Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber. Sci. Rep. 2017, 7, 3076. [Google Scholar] [CrossRef]
- Zhai, S.L.; Zhao, X.P.; Liu, S.; Shen, F.L.; Li, L.L.; Luo, C.R. Inverse Doppler Effects in Broadband Acoustic Metamaterials. Sci. Rep. 2016, 6, 32388. [Google Scholar] [CrossRef]
- Shi, X.; Lin, X.; Kaminer, I.; Gao, F.; Yang, Z.; Joannopoulos, J.D.; Soljačić, M.; Zhang, B. Superlight inverse Doppler effect. Nat. Phys. 2018, 14, 1001–1005. [Google Scholar] [CrossRef]
- Luo, W.; Wang, X.; Chen, X.; Zheng, S.; Zhao, S.; Wen, Y.; Li, L.; Zhou, J. Perfect absorption based on a ceramic anapole metamaterial. Mater. Horiz. 2023, 10, 1769–1779. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Zhu, L.; Yao, J. Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 2016, 8, 15273–15280. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, L.; Li, J.; Weng, J.; Li, J.; Guo, Z.; Xu, P.; Liu, W.; Yang, J.; Qin, Y.; et al. Tunable plasmon-induced transparency with coupled L-shape graphene metamaterial. Results Phys. 2022, 38, 105537. [Google Scholar] [CrossRef]
- Chen, T.; Yu, D.; Wu, B.; Xia, B. Weak Signals Detection by Acoustic Metamaterials-Based Sensor. IEEE Sens. J. 2021, 21, 16815–16825. [Google Scholar] [CrossRef]
- Cao, P.; Wu, Y.; Wang, Z.; Li, Y.; Zhang, J.; Liu, Q.; Cheng, L.; Niu, T. Tunable Dual-Band Ultrasensitive Stereo Metamaterial Terahertz Sensor. IEEE Access 2020, 8, 219525–219533. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.I.; Mahmoud, K.R.; Mubarak, R.I. Design and optimization of broadband metamaterial absorber based on manganese for visible applications. Sci. Rep. 2023, 13, 11937. [Google Scholar] [CrossRef]
- Nandakumar, S.; Trabelsi, Y.; Vasudevan, B.; Gunasekaran, S. MXene fractal-based dual-band metamaterial absorber in the visible and near-infrared regime. Opt. Quantum Electron. 2023, 55, 992. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, J.; Que, L.; Mi, G.; Zhou, Y.; Jiang, Y. A visible-infrared double band photodetector absorber. Results Phys. 2020, 18, 103283. [Google Scholar] [CrossRef]
- Hu, D.; Wang, H.y.; Zhu, Q.f. Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Lou, P.; He, Y.; Zhu, H.; Zhang, X.; Hu, L.; Wang, B.-X. Multiple-band terahertz perfect light absorbers enabled by using multiple metallic bars. Phys. Scr. 2021, 96, 055502. [Google Scholar] [CrossRef]
- Wen, Q.-Y.; Zhang, H.-W.; Xie, Y.-S.; Yang, Q.-H.; Liu, Y.-L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 2009, 95, 241111. [Google Scholar] [CrossRef]
- Wang, J.; Lang, T.; Hong, Z.; Xiao, M.; Yu, J. Design and Fabrication of a Triple-Band Terahertz Metamaterial Absorber. Nanomaterials 2021, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Liu, X.; Huang, Z.; Chen, J.; Liu, Z. Metallic Metasurfaces for Light Absorbers. IEEE Photonics Technol. Lett. 2017, 29, 47–50. [Google Scholar] [CrossRef]
- Huang, S.; Xie, Z.; Chen, W.; Lei, J.; Wang, F.; Liu, K.; Li, L. Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt. Express 2018, 26, 7066–7078. [Google Scholar] [CrossRef]
- Niu, T.; Qiu, B.; Zhang, Y.; Hirakawa, K. Control of absorption properties of ultra-thin metal–insulator–metal metamaterial terahertz absorbers. Jpn. J. Appl. Phys. 2020, 59, 120904. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, H.; Zhang, L.; Zhao, Y.; Xie, W. Temperature insensitive ultra-broadband THz metamaterial absorber based on metal square ring resonators. Results Phys. 2021, 22, 103915. [Google Scholar] [CrossRef]
- Tang, H.; Menabde, S.G.; Anwar, T.; Kim, J.; Jang, M.S.; Tagliabue, G. Photo-modulated optical and electrical properties of graphene. Nanophotonics 2022, 11, 917–940. [Google Scholar] [CrossRef]
- Chang, K.; Li, Z.; Gu, Y.; Liu, K.; Chen, K. Graphene-integrated waveguides: Properties, preparation, and applications. Nano Res. 2022, 15, 9704–9726. [Google Scholar] [CrossRef]
- Pumera, M.; Sofer, Z. Towards stoichiometric analogues of graphene: Graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 2017, 46, 4450–4463. [Google Scholar] [CrossRef]
- Armaković, S.; Armaković, S.J. Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets. J. Phys. Chem. Solids 2016, 98, 156–166. [Google Scholar] [CrossRef]
- Lv, Y.; Li, H.; Coileáin, C.Ó.; Zhang, D.; Heng, C.; Chang, C.-R.; Hung, K.M.; Cheng, H.H.; Wu, H.-C. Photoelectrical properties of graphene/doped GeSn vertical heterostructures. RSC Adv. 2020, 10, 20921–20927. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Wang, L.; Mu, X.; Wang, J. The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. J. Mater. Chem. C 2021, 9, 13600–13616. [Google Scholar] [CrossRef]
- Tiutiunnyk, A.; Duque, C.A.; Caro-Lopera, F.J.; Mora-Ramos, M.E.; Correa, J.D. Opto-electronic properties of twisted bilayer graphene quantum dots. Phys. E Low-Dimens. Syst. Nanostructures 2019, 112, 36–48. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Mu, X.; Sun, M. Optoelectronic and photoelectric properties and applications of graphene-based nanostructures. Mater. Today Phys. 2020, 13, 100196. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Yang, P. Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures. Compos. Part B Eng. 2022, 233, 109645. [Google Scholar] [CrossRef]
- Wirth-Lima, A.J.; Alves-Sousa, P.P.; Bezerra-Fraga, W. Graphene’s photonic and optoelectronic properties—A review. Chin. Phys. B 2020, 29, 037801. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Huang, J.; Zhang, Z.; Xie, W.; Jiang, X.; He, X.; Han, Y.; Zhang, Z.; Yu, Y. Continuously tunable metasurfaces controlled by single electrode uniform bias-voltage based on nonuniform periodic rectangular graphene arrays. Opt. Express 2020, 28, 29306–29317. [Google Scholar] [CrossRef]
- Liu, W.; Song, Z.; Wang, W. A high-performance broadband terahertz absorber based on multilayer graphene squares. Phys. Scr. 2021, 96, 055504. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Han, X. A Transparent Tunable Broadband Microwave Absorber Based on Multi-layer Structure by Patterned Graphene. J. Phys. Conf. Ser. 2023, 2434, 012001. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Li, X.; Xiao, S. Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array. Opt. Commun. 2019, 431, 199–202. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, K.-D. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Opt. Express 2018, 26, 31693–31705. [Google Scholar] [CrossRef]
- Yue, J.; Shang, X.-j.; Zhai, X.; Wang, L.-l. Numerical Investigation of a Tunable Fano-Like Resonance in the Hybrid Construction Between Graphene Nanorings and Graphene Grating. Plasmonics 2017, 12, 523–528. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, G.; Pan, R.; Zhang, J.; Shuai, Y.; Tan, H. Tunable absorption as multi-wavelength at infrared on graphene/hBN/Al grating structure. Opt. Express 2018, 26, 18230–18237. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Ladumor, M.; Sorathiya, V.; Guo, T. Graphene based tunable grating structure. Mater. Res. Express 2019, 6, 025602. [Google Scholar] [CrossRef]
- Wu, J. Enhancement of Absorption in Graphene Strips with Cascaded Grating Structures. IEEE Photonics Technol. Lett. 2016, 28, 1332–1335. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Song, Z. Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial. J. Appl. Phys. 2020, 128, 093104. [Google Scholar] [CrossRef]
- Gong, D.; Mei, J.; Li, N.; Shi, Y. Tunable metamaterial absorber based on VO2-graphene. Mater. Res. Express 2022, 9, 115803. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, R.; Huang, J.; Lv, Y.; Han, C.; Liu, S. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials. Opt. Express 2019, 27, 7393–7404. [Google Scholar] [CrossRef] [PubMed]
- Shoghi Badr, N.; Moradi, G. Design and analysis of graphene-based THz absorber using multi-layer structure based on increasing profile for conductivity of the graphene layers. Optik 2019, 198, 163239. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, Q.; Xiao, S.; Xu, C.; Xiong, L.; Lv, H.; Du, J.; Yu, H. Low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency in two stub resonators side-coupled with a plasmonic waveguide system. J. Phys. D Appl. Phys. 2017, 50, 455107. [Google Scholar] [CrossRef]
- Liu, C.; Su, W.; Liu, Q.; Lu, X.; Wang, F.; Sun, T.; Chu, P.K. Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 2018, 26, 9039–9049. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, G.; Bookey, H.T.; Biancalana, F.; Abraham, E.; Wang, Y.; Ji, W.; Kar, A.K. Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express 2016, 24, 13033–13043. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef]
- Chen, P.; Tang, M.; Liu, A.; Hu, Y.; Li, L.; Chen, W.; Su, Y.; Huang, Y.; Zheng, J.; Liu, K.; et al. Polarization-sensitive tunable multi-band terahertz absorber based on single-layered graphene rings. J. Opt. Soc. Am. B 2021, 38, 3000–3008. [Google Scholar] [CrossRef]
- Mou, N.; Sun, S.; Dong, H.; Dong, S.; He, Q.; Zhou, L.; Zhang, L. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express 2018, 26, 11728–11736. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, B.; Yan, M.; Wu, B.; Cheng, P.; Sun, Z. Tunable terahertz perfect absorber with a graphene-based double split-ring structure. Opt. Mater. Express 2021, 11, 73–79. [Google Scholar] [CrossRef]
- Biabanifard, S. A graphene-based dual-band THz absorber design exploiting the impedance-matching concept. J. Comput. Electron. 2021, 20, 38–48. [Google Scholar] [CrossRef]
- Mei, P.; Zhang, S.; Lin, X.Q.; Pedersen, G.F. A Triple-Band Absorber with Wide Absorption Bandwidths Using an Impedance Matching Theory. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 521–525. [Google Scholar] [CrossRef]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, W.; Cui, Q.; Wang, Y.; Yu, J. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Opt. Express 2020, 28, 40060–40074. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chen, S.; Yu, P.; Duan, X.; Xie, B.; Tian, J. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett. 2013, 103, 203112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Qin, X.; Zhao, Q.; Duan, G.; Wang, B.-X. Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators. Photonics 2024, 11, 225. https://doi.org/10.3390/photonics11030225
Wang J, Qin X, Zhao Q, Duan G, Wang B-X. Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators. Photonics. 2024; 11(3):225. https://doi.org/10.3390/photonics11030225
Chicago/Turabian StyleWang, Jieru, Xuefeng Qin, Qian Zhao, Guiyuan Duan, and Ben-Xin Wang. 2024. "Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators" Photonics 11, no. 3: 225. https://doi.org/10.3390/photonics11030225
APA StyleWang, J., Qin, X., Zhao, Q., Duan, G., & Wang, B.-X. (2024). Five-Band Tunable Terahertz Metamaterial Absorber Using Two Sets of Different-Sized Graphene-Based Copper-Coin-like Resonators. Photonics, 11(3), 225. https://doi.org/10.3390/photonics11030225