Simple Design of Polarization-Selective Tunable Triple Terahertz Absorber Based on Graphene Rectangular Ring Resonator
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Tang, R.; Zhou, H.; Li, Q.; Ma, S.; Wang, D.; Liu, T.; Ling, X.; Tan, W.; He, Q.; et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photonics 2021, 3, 036003. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Sun, Y.; Jiang, H.; Ding, Y.-Q.; Li, Y.; Zhang, Y.; Chen, H. Anomalous broadband Floquet topological metasurface with pure site rings. Adv. Photonics Nexus 2023, 2, 016006. [Google Scholar] [CrossRef]
- Kim, J.; Seong, J.; Yang, Y.; Moon, S.-W.; Badloe, T.; Rho, J. Tunable metasurfaces towards versatile metalenses and metaholograms: A review. Adv. Photonics 2022, 4, 024001. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Zhou, N.; Xu, X. Metamaterial-based perfect absorbers for efficiently enhancing near field radiative heat transfer. J. Quant. Spectrosc. Radiat. Transf. 2015, 167, 156–163. [Google Scholar] [CrossRef]
- Meng, H.; Shang, X.; Xue, X.; Tang, K.; Xia, S.; Zhai, X.; Liu, Z.; Chen, J.; Li, H.; Wang, L. Bidirectional and dynamically tunable THz absorber with Dirac semimetal. Opt. Express 2019, 27, 31062. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Wei, W.; Qu, X. Extraordinary Physical Properties of Functionalized Graphene. Small 2012, 8, 2138–2151. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Zeng, Q.; Tang, B.; Ahmad, S.; Sun, T. Polarization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mater. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y.; Yang, H.; Cheng, S.; Yang, W.; Zhang, H.; Yi, Z.; Yi, Y.; Li, H. Active tunable terahertz bandwidth absorber based on single layer graphene. Commun. Theor. Phys. 2023, 75, 045503. [Google Scholar] [CrossRef]
- Mohammad Khani, A.A.; Fouladian, M.; Mazloum, J. A wideband tunable microwave graphene-based absorber and duplexer. Solid State Commun. 2022, 353, 114797. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 2014, 22, 22743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Li, T.T.; Lv, H.H.; Huang, X.Y.; Zhang, X.; Xu, S.L.; Zhang, H.Y. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies. Chin. Phys. Lett. 2015, 32, 068101. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, F.; Xu, X.; Wang, Y.E.; Guo, E. Design of separately tunable terahertz two-peak absorber based on graphene. Opt. Commun. 2016, 369, 65–71. [Google Scholar] [CrossRef]
- Sakamoto, M.; Nhan, H.T.; Noda, K.; Sasaki, T.; Tanaka, M.; Kawatsuki, N.; Ono, H. Polarization-probe polarization-imaging system in near-infrared regime using a polarization grating. Sci. Rep. 2022, 12, 15268. [Google Scholar] [CrossRef]
- Yin, C.; Han, C.; Xue, X.; Huang, L. Spectra-Based Selective Searching for Hyperspectral Anomaly Detection. Appl. Sci. 2020, 11, 175. [Google Scholar] [CrossRef]
- Sun, X.; Ma, R.; Pu, X.; Ge, S.; Cheng, J.; Li, X.; Wang, Q.; Zhou, S.; Liu, W. High-Efficiency Polarization Multiplexing Metalenses. Nanomaterials 2022, 12, 1500. [Google Scholar] [CrossRef]
- Deng, G.; Chen, P.; Yang, J.; Yin, Z.; Qiu, L. Graphene-based tunable polarization sensitive terahertz metamaterial absorber. Opt. Commun. 2016, 380, 101–107. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, K.-D. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Opt. Express 2018, 26, 31693. [Google Scholar] [CrossRef]
- Cao, A.-L.; Zhang, K.; Zhang, J.-R.; Liu, Y.; Kong, W.-J. Actively tunable polarization-sensitive multiband absorber based on graphene*. Chin. Phys. B 2020, 29, 114205. [Google Scholar] [CrossRef]
- Zhan, Y.; Fan, C.Z. Investigation on the tunable and polarization sensitive three-band terahertz graphene metamaterial absorber. Mater. Res. Express 2023, 10, 055802. [Google Scholar] [CrossRef]
- Asgari, S.; Fabritius, T. Multi-band terahertz anisotropic metamaterial absorber composed of graphene-based split square ring resonator array featuring two gaps and a connecting bar. Sci. Rep. 2024, 14, 7477. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef]
- Yan, F.; Li, L.; Wang, R.X.; Tian, H.; Liu, J.L.; Liu, J.Q.; Tian, F.J.; Zhang, J.Z. Ultrasensitive Tunable Terahertz Sensor With Graphene Plasmonic Grating. J. Light. Technol. 2019, 37, 1103–1112. [Google Scholar] [CrossRef]
- Xu, C.; Jin, Y.C.; Yang, L.Z.; Yang, J.Y.; Jiang, X.Q. Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide. Opt. Express 2012, 20, 22398–22405. [Google Scholar] [CrossRef]
- Zhang, R.; Luo, Y.; Xu, J.; Wang, H.; Han, H.; Hu, D.; Zhu, Q.; Zhang, Y. Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption. Opt. Express 2021, 29, 42989. [Google Scholar] [CrossRef]
- Guo, Y.; Qi, Y.; Liu, C.; Liu, W.; Wang, X. Research on Perfect and Tunable Metamaterial Absorber Based on Crosshair-shaped Graphene. J. Phys. Conf. Ser. 2021, 2109, 012015. [Google Scholar] [CrossRef]
- Qin, Z.; Shi, X.; Yang, F.; Hou, E.; Meng, D.; Sun, C.; Dai, R.; Zhang, S.; Liu, H.; Xu, H.; et al. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring. Opt. Express 2021, 30, 473. [Google Scholar] [CrossRef]
- Pandit, N.; Jaiswal, R.K.; Pathak, N.P. Plasmonic metamaterial-based filtering structures with dynamic tunability. Opt. Lett. 2019, 44, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-X.; Wang, G.-Z. Temperature tunable metamaterial absorber at THz frequencies. J. Mater. Sci. Mater. Electron. 2017, 28, 8487–8493. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Q.; Jin, Y.; He, S.L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B 2010, 27, 498–504. [Google Scholar] [CrossRef]
- Chen, P.; Tang, M.; Liu, A.; Hu, Y.; Li, L.; Chen, W.; Su, Y.; Huang, Y.; Zheng, J.; Liu, K.; et al. Polarization-sensitive tunable multi-band terahertz absorber based on single-layered graphene rings. J. Opt. Soc. Am. B 2021, 38, 3000. [Google Scholar] [CrossRef]
- Tian, X.Y.; Qiu, X.J.; Li, H.; Lu, J.J.; Yang, C.Y. Dynamically light-switched polarization-sensitive absorber based on semiconductor-incorporated metamaterial structure. Opt. Mater. 2024, 149, 115439. [Google Scholar] [CrossRef]
Parameter (μm) | Error (μm) | Sensitivity to Peaks (P1, P2, P3) | Sensitivity to Peaks (Q1, Q2, Q3) | |
---|---|---|---|---|
Thickness of SiO2 (d2) | 6.55 | ±0.2 | Nonsensitive parameter | Nonsensitive parameter |
Graphene transverse strip length (a1) | 4.1 | ±0.1 | P1 and P2: Nonsensitive P3: Sensitive | Q1 and Q2: Nonsensitive Q3: Sensitive |
Graphene vertical bar width (b1) | 6.2 | ±0.1 | P1 and P2: Nonsensitive P3: Sensitive | Q1 and Q2: Nonsensitive Q3: Sensitive |
Ref. No. | x Polarization | y Polarization | Year | Structural Composition | ||||
---|---|---|---|---|---|---|---|---|
Peak Number | Absorption Wavelength | Absorptivity | Peak Number | Absorption Wavelength | Absorptivity | |||
[19] | 2 | 6.42 and 8.37 THz | >98% | 1 | 7.22 THz | >99% | 2016 | Au-graphene-SiO2-Au |
[20] | broadband | 5.8–6.5 THz | >95% | 0 | - | - | 2018 | three graphene-Al2O3- gold |
[21] | 2 | 27.3 and 31.9 µm | >90% | 2 | 16.3 and 21.2 µm | >90% | 2020 | double graphene-Si-Au |
[35] | 2 | 4.09 and 6.28 THz | >96% | 2 | 3.89 and 5.39 THz | >85% | 2021 | graphene-SiO2-Au |
[22] | 3 | 2.30, 3.41 and 4.27 THz | >87% | 0 | - | - | 2023 | graphene-SiO2-Au |
[23] | 3 | 1.04, 1.58 and 3.63 THz | >99% | 1 | 2.31 THz | >81% | 2024 | Ion gel-graphene-Rogers RT5880LZ-gold |
[36] | 1 | 17.57 THz | >90% | broadband | 8.0–16.0 THz | >90% | 2024 | VO2-GaA-Ge-SiO2-Metal |
This work | 3 | 2.73, 5.70 and 11.19 THz | >96% | 3 | 2.29, 7.55 and 9.98 THz | >90% | graphene-SiO2-Au |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhu, H.; Ni, B.; Zhou, M.; Feng, C.; Ni, H.; Chang, J. Simple Design of Polarization-Selective Tunable Triple Terahertz Absorber Based on Graphene Rectangular Ring Resonator. Photonics 2024, 11, 1160. https://doi.org/10.3390/photonics11121160
Wang J, Zhu H, Ni B, Zhou M, Feng C, Ni H, Chang J. Simple Design of Polarization-Selective Tunable Triple Terahertz Absorber Based on Graphene Rectangular Ring Resonator. Photonics. 2024; 11(12):1160. https://doi.org/10.3390/photonics11121160
Chicago/Turabian StyleWang, Jiang, Haixia Zhu, Bo Ni, Minhao Zhou, Chengtao Feng, Haibin Ni, and Jianhua Chang. 2024. "Simple Design of Polarization-Selective Tunable Triple Terahertz Absorber Based on Graphene Rectangular Ring Resonator" Photonics 11, no. 12: 1160. https://doi.org/10.3390/photonics11121160
APA StyleWang, J., Zhu, H., Ni, B., Zhou, M., Feng, C., Ni, H., & Chang, J. (2024). Simple Design of Polarization-Selective Tunable Triple Terahertz Absorber Based on Graphene Rectangular Ring Resonator. Photonics, 11(12), 1160. https://doi.org/10.3390/photonics11121160