Induced Emission on Transitions from Vibrational Excited Levels of the KrF Molecule
Abstract
:1. Introduction
2. Materials and Methods
2.1. Boltzmann Kinetic Equation
2.2. Model of Plasma–Chemical Processes in the Active Medium
k, 1/cm3 | Ref. | |
---|---|---|
KrF(B, i) + (He,Ne,Kr) → KrF(C) + (He,Ne,Kr) | 5.0 (−10) | [8] |
KrF(C) + (He,Ne,Kr) → KrF(B, i) + (He,Ne,Kr) | 3.5 (−10) | [8] |
KrF(B, i) + Kr → KrF(B, i − 1) + Kr | 8.0 (−11) | [8] |
KrF(B, i) + (He,Ne) → KrF(B, i − 1) + (He,Ne) | 1.0 (−11) (i ≤ 10) 5.0 (−11) (i > 10) | [10] [10] |
2.3. Induced Emission Cross Section and Einstein Coefficient for Bound-Free B–X Transitions from Vibrational Levels of the KrF Molecule
3. Results
3.1. Simulation of Laser Emission from the Ground State B
3.2. Amplification of the 246.8 nm Wavelength Radiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bobrovnikov, S.M.; Gorlov, E.V.; Zharkov, V.I. Dynamics of the laser fragmentation/laser-induced fluorescence process in nitrobenzene vapors. Appl. Opt. 2018, 57, 9381–9387. [Google Scholar] [CrossRef] [PubMed]
- Loree, T.R.; Butterfield, K.B.; Barker, D.L. Spectral tuning of ArF and KrF discharge lasers. Appl. Phys. Lett. 1978, 32, 171–173. [Google Scholar] [CrossRef]
- Kudryavtsev, Y.A.; Kuzmina, N.P. Excimer Gas-Discharge Tunable ArF Laser. Appl. Phys. 1977, 13, 107–108. [Google Scholar] [CrossRef]
- Yampolskaya, S.A.; Yastremskii, A.G.; Panchenko, Y.N.; Puchikin, A.V. Amplification of laser radiation at the edge of the KrF (B–X) spectral line. Quantum Electron. 2022, 52, 437–442. [Google Scholar] [CrossRef]
- Pummer, H.; Hohla, K.; Rebentrost, F. Influence of collisional coupling on the energy extraction from the B, C, and D state in KrF. Appl. Phys. 1979, 20, 129–134. [Google Scholar] [CrossRef]
- Jacob, J.H.; Trainor, D.W.; Rokni, M.; Hsia, J.C. Accessibility of the KrF*(B) state to laser photons. Appl. Phys. Lett. 1980, 37, 522–524. [Google Scholar] [CrossRef]
- Dreiling, T.D.; Setser, D.W. State-to-state relaxation processes for XeCl(B, C). J. Chem. Phys. 1981, 75, 4360–4378. [Google Scholar] [CrossRef]
- Kannari, F.; Obara, M.; Fujioka, T.J. An advanced kinetic model of electron-beam-excited KrF lasers including the vibrational relaxation in KrF*(B) and collisional mixing of KrF*(B, C). Appl. Phys. 1985, 57, 4309–4322. [Google Scholar] [CrossRef]
- Kannari, F.; Suda, A.; Obara, M.; Fujioka, T. Theoretical simulation of electron-beam-excited xenon-chloride (XeCI) Lasers. IEEE J. Quantum Electron. QE 1983, 19, 1587–1600. [Google Scholar] [CrossRef]
- Kvaran, A.; Shaw, M.J.; Simons, J.P. Vibrational relaxation of KrF* and XeCl* by rare gases. Appl. Phys. B 1988, 46, 95–102. [Google Scholar] [CrossRef]
- Morgan, W.L.; Winter, N.W.; Kulander, K.C. Vibrational relaxation and laser extraction in rare gas halide excimers. J. Appl. Phys. 1983, 54, 4275–4279. [Google Scholar] [CrossRef]
- Datsyuk, V.V. Peculiarities of KrF excimer vibrational relaxation in low-pressure Kr/F2 mixtures excited by a short pulse. Appl. Phys. B 1992, 55, 60–64. [Google Scholar] [CrossRef]
- Tamagake, K.; Setser, D.W. Simulation of the bound-free KrF* emission spectra from reactive quenching of Kr(5s[3/2]2) and Kr(5s[3/2]1) atoms. J. Chem. Phys. 1977, 67, 4370–4383. [Google Scholar] [CrossRef]
- Chua, L.; Lin, P.-M. Computer Aided Analysis of Electronic Circuits, Algorithms and Computational Techniques; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Rockwood, S. Elastic and Inelastic Cross Sections for Electron-Hg Scattering from Hg Transport Data. Phys. Rev. A 1973, 8, 2348–2358. [Google Scholar] [CrossRef]
- Yampolskaya, S.A.; Yastremskii, A.G.; Panchenko, Y.N.; Puchikin, A.V.; Bobrovnikov, S.M. Numerical study of the discharge spatial characteristics influence on the KrF laser generation. IEEE J. Quantum Electron. 2021, 56, 1–9. [Google Scholar] [CrossRef]
- Register, D.; Trajmar, S.; Steffensen, G. Electron-impact-excitation cross sections for electronic levels in neon for incident energies between 25 and 100 eV. Phys. Rev. A 1984, 29, 1793–1811. [Google Scholar] [CrossRef]
- Krishnakumar, E.; Srivastava, S. Ionization cross sections of rare-gas atoms by electron impact. J. Phys. B At. Mol. Opt. Phys. 1988, 21, 1055–1062. [Google Scholar] [CrossRef]
- Boffard, J.; Keeler, M.; Piech, G.; Anderson, L.W.; Lin, C.C. Measurement of electron-impact excitation cross sections out of the neon 3P2 metastable level. Phys. Rev. A 2001, 64, 032708. [Google Scholar] [CrossRef]
- Ton-That, D.; Flannery, M. Cross sections for ionization of metastable rare-gas atoms (Ne*, Ar*, Kr*, Xe*) and of metastable N2*, CO* molecules by electron impact. Phys. Rev. A 1977, 15, 517–526. [Google Scholar] [CrossRef]
- Chilton, J.; Stewart, M., Jr.; Lin, C. Electron-impact excitation cross sections of neon. Phys. Rev. A 2000, 61, 052708. [Google Scholar] [CrossRef]
- Rejoub, R.; Lindsay, B.; Stebbings, R. Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases. Phys. Rev. A 2002, 65, 042713. [Google Scholar] [CrossRef]
- Hyman, H. Electron-impact excitation of metastable argon and krypton. Phys. Rev. A 1978, 18, 441–447. [Google Scholar] [CrossRef]
- Hyman, H. Electron-impact ionization cross sections for excited states of the rare gases (Ne, Ar, Kr, Xe), cadmium and mercury. Phys. Rev. A 1979, 20, 855–859. [Google Scholar] [CrossRef]
- Frost, L.; Phelps, A. Momentum-Transfer Cross Sections for Slow Electrons in He, Ar, Kr, and Xe from Transport Coefficients. Phys. Rev. A 1964, 136, 1538–1545. [Google Scholar] [CrossRef]
- Lowke, J.; Phelps, A.; Irwin, B.J. Predicted electron transport coefficient of CO2-N2-He laser mixtures. Appl. Phys. 1973, 44, 4664–4671. [Google Scholar] [CrossRef]
- Rapp, D.; Englander-Golden, P.J. Total cross section from ionization and attachment in gases by electron impact. I. Positive ionization. Chem. Phys. 1965, 43, 1464–1479. [Google Scholar]
- Fletcher, C. Computational Galerkin Methods; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Ongy, D.S.; Tou, T.Y.; Low, K.S. Kinetics modelling of a self-sustained discharge KrF laser. J. Phys. D Appl. Phys. 1996, 29, 2586–2594. [Google Scholar] [CrossRef]
- Jacob, J.H.; Hsia, J.C.; Mangano, J.A.; Rokni, M. Pulse shape and laser-energy extraction from e-beam-pumped KrF. J. Appl. Phys. 1979, 50, 5130–5134. [Google Scholar] [CrossRef]
- Hay, P.J.; Dunning, T.H. The electronic states of KrF. J. Chem. Phys. 1977, 66, 1306–1316. [Google Scholar] [CrossRef]
- Mies, F.H. Stimulated emission and population inversion in diatomic bound-continuum transitions. Mol. Phys. 1973, 26, 1233–1246. [Google Scholar] [CrossRef]
- Surzhikov, S.; Tenishev, V.; Chudov, L. On the problem of diatomic molecules wave functions determination. Math. Model. 2000, 12, 118–127. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yampolskaya, S.; Yastremskii, A.; Panchenko, Y.; Puchikin, A.; Bobrovnikov, S. Induced Emission on Transitions from Vibrational Excited Levels of the KrF Molecule. Photonics 2024, 11, 1088. https://doi.org/10.3390/photonics11111088
Yampolskaya S, Yastremskii A, Panchenko Y, Puchikin A, Bobrovnikov S. Induced Emission on Transitions from Vibrational Excited Levels of the KrF Molecule. Photonics. 2024; 11(11):1088. https://doi.org/10.3390/photonics11111088
Chicago/Turabian StyleYampolskaya, Sofia, Arcady Yastremskii, Yuri Panchenko, Alexey Puchikin, and Sergey Bobrovnikov. 2024. "Induced Emission on Transitions from Vibrational Excited Levels of the KrF Molecule" Photonics 11, no. 11: 1088. https://doi.org/10.3390/photonics11111088
APA StyleYampolskaya, S., Yastremskii, A., Panchenko, Y., Puchikin, A., & Bobrovnikov, S. (2024). Induced Emission on Transitions from Vibrational Excited Levels of the KrF Molecule. Photonics, 11(11), 1088. https://doi.org/10.3390/photonics11111088