A Multi-Objective Genetic Algorithm Approach for Silicon Photonics Design
Abstract
:1. Introduction
2. Review on the Genetic Algorithm and Interleaver/Deinterleaver Circuit
3. Formulation of the Genetic Algorithm
- a.
- Chromosome formation: In this approach, the three design parameters, i.e., the coupling coefficients, are arranged in the form of a array, , called here a “chromosome”. A generation of -chromosomes is then constructed as a matrix of rows, each with a combination of values for . This means that a generation is given by a matrix of dimensions . The initial population is created using random values of 3-decimal numbers between 0 and 1. The number of chromosomes attempted in our work was taken: , and . The random initiation of the population is not needed afterwards since the next generations will be created using the crossover and mutation processes.
- b.
- Fitness functions: When the circuit performance is tested for a certain chromosome, or equivalently a combination, the corresponding performance parameters, i.e., the bandwidth (), the crosstalk (), the dispersion (D), the insertion loss (), and the shape factor (), are calculated for both channels. As stated in [53], the shape factor condition, , is not mandatory to satisfy. Also, the insertion loss cannot practically reach ; however, minimizing it is highly desirable. Therefore, the three conditions to focus on are , i.e., around the point of maximum transmission, , and . Recall that there are two channels and hence the six performance parameters must satisfy six conditions. This places the problem in the multi-objective optimization category [57]. In order to handle such a problem, we define a “performance metric”, for each performance parameter. This metric is calculated as the difference between the calculated performance parameter and the corresponding target value. The difference is calculated such that when the metric is zero or more, this indicates that the performance is acceptable. Then, the metric for the bandwidth, , is given by , the metric for the crosstalk, , and the metric for the dispersion is given by . Of course, there are two sets of these three metrics, one for each channel. For the through channel, we define , , and . For the drop channel, we define , , and . Then, in total, there are six metrics. Let us rename these metrics as , and for the through channel, and , and for the drop channel, respectively. We can then define a set for these metrics as follows:
- c.
- Selection criterion: A selection criterion is used to pick the best chromosomes that will parent the next generation. Intuitively, one would think that the chromosomes to select for the next stage of the process, the crossover, are those with maximum and minimum . However, after some attempts, we found that maximizing does not necessarily lead to an acceptable solution that satisfies all conditions. For example, pushing the bandwidth way above the required minimum of leads automatically to worse crosstalk, lower than the required . This is a clear result of the physics of the problem since a wider bandwidth means more overlap between adjacent channels and therefore worse crosstalk; a positive bandwidth metric, , and a negative crosstalk metric, . Hence, contributes to the calculation of , while belongs to the calculation of . So, can grow because of the positive metric for the bandwidth but at the same time gets more negative, due to the bad crosstalk, and thereby no acceptable solution is found. This contradiction of the performance metrics is not unexpected for multi-objective problems [65]; however, the issue now is how to find a design with all design parameters satisfied, i.e., .
- d.
- Crossover: Each coupling coefficient value, in the favored chromosomes, is converted to an equivalent 10-digit binary number. This binary number is split at a position called the “crossing site”, designated by , into two parts. For example, if , then the binary number is split into two parts, the leftmost 3 bits and the rightmost 7 bits. The crossover is accomplished by randomly exchanging the right parts of the crossing site between the favored chromosomes. Note that the selected chromosomes in our design represent only 50% of a generation and will be responsible for creating the next generation. This means that one chromosome might have the opportunity to mate more than once. In our work, we attempted , and . Note that each coupling coefficient is treated independently from the other. Meaning that the mating takes place between two binary numbers that belong to the same coupling coefficient, , , or .
- e.
- Mutation: After the crossover, the new coupling coefficients are converted back from binary to decimal. Mutation is applied. If the maximum mutation allowed is , then a random value is added to the values of the coupling coefficients where, . In our work, we tried , and . We found out that mutation is necessary to avoid the saturation in the values of the chromosomes, away from a solution. Also, after hitting a solution, mutation is necessary to push the calculations away in the hope of finding a different solution. Finally, the new generation is ready, and the process starts over.
4. Results and Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Jia, L.; Zhang, Y.; Qu, Y.; Jia, B.; Moss, D.J. Graphene Oxide for Integrated Photonics and Flat Optics. Adv. Mater. 2021, 33, 2006415. [Google Scholar] [CrossRef]
- Broquin, J.E.; Honkanen, S. Integrated photonics on glass: A review of the ion-exchange technology achievements. Appl. Sci. 2021, 11, 4472. [Google Scholar] [CrossRef]
- Monir, M.; El-Refaei, H.; Khalil, D. Single-mode refractive index reconstruction using an NM-line technique. Fiber Integr. Opt. 2006, 25, 69–74. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonics: A Necessity in the Field of Sensing-A Review (Invited). Fiber Integr. Opt. 2021, 40, 14–47. [Google Scholar] [CrossRef]
- Gad, M.; ElRefaei, H.H.; Khalil, D.A.M.; Omar, O.A. Comparison of the N times mode-lines technique to the inverse technique in refractive index profile reconstruction. Opt. Eng. 2007, 46, 094601. [Google Scholar] [CrossRef]
- Monir, M.; El-Refaei, H.; Khalil, D.; Omar, O. Assessment of the NM-lines sensitivity for measurement errors. Fiber Integr. Opt. 2007, 26, 1–15. [Google Scholar] [CrossRef]
- Salah, M.; Gad, M.; Elkattan, M.; Sabry, Y. The optical constants of gamma irradiated silver doped PVA in the near infrared range. Micro Nano Lett. 2020, 15, 480–485. [Google Scholar] [CrossRef]
- Salah, M.; Gad, M.; Elkattan, M.; Sabry, Y.M. Effect of gamma-irradiation and doping on the absorption edge and the optical bandgap of silver-doped PVA films. Opt. Commun. 2020, 473, 125933. [Google Scholar] [CrossRef]
- Demkov, A.A.; Bajaj, C.; Ekerdt, J.G.; Palmstrøm, C.J.; Yoo, S.J.B. Materials for emergent silicon-integrated optical computing. J. Appl. Phys. 2021, 130, 070907. [Google Scholar] [CrossRef]
- Liu, J.; Huang, G.; Wang, R.N.; He, J.; Raja, A.S.; Liu, T.; Engelsen, N.J.; Kippenberg, T.J. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 2021, 12, 2236. [Google Scholar] [CrossRef]
- Zhuang, L. Programmable Integrated Optical Signal Processors: Toward Next-Generation Signal Processing Engine in Communication Devices. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; Available online: https://ieeexplore.ieee.org/abstract/document/8696565 (accessed on 9 July 2022).
- Pavesi, L.; Lockwood, D. Silicon Photonics IV (Topics in Applied Physics (94)); Springer: Berlin/Heidelberg, Germany, 2020; Volume 94, ISBN 3540160086. [Google Scholar]
- Maram, R.; Kaushal, S.; Azaña, J.; Chen, L.R. Recent Trends and Advances of Silicon-Based Integrated Microwave Photonics. Photonics 2019, 6, 13. [Google Scholar] [CrossRef]
- Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 2002, 14, 483–485. [Google Scholar] [CrossRef]
- Okamoto, H. Fundamentals of Optical Waveguides, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 134, ISBN 978-0-12-525096-2. [Google Scholar]
- Griol, A.; Håkansson, A.; Brimont, A.; Cuesta, F.; Martí, J.; Galán, J.V.; Sanchis, P.; Villalba, P. Highly efficient crossing structure for silicon-on-insulator waveguides. Opt. Lett. 2009, 34, 2760–2762. [Google Scholar] [CrossRef]
- Shoji, T.; Tsuchizawa, T.; Watanabe, T.; Yamada, K.; Morita, H. Spot-size converter for low-loss coupling between 0.3-μm-square Si wire waveguides and single-mode fibers. In Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Glasgow, UK, 10–14 November 2002; Volume 1, pp. 289–290. [Google Scholar] [CrossRef]
- Gad, M.; Zaki, A.; Sabry, Y.M. 2017 34 th NATIONAL RADIO SCIENCE CONFERENCE Arab Academy for Science, Technology & Maritime Transport Silicon photonic mid-infrared grating coupler based on silicon-on—Insulator technology 2017, 34 th NATIONAL RADIO SCIENCE CONFERENCE Source Gratin. Arab Acad. Sci. Technol. Marit. Transp. II 2017, 400–406. [Google Scholar]
- Cutolo, A.; Iodice, M.; Irace, A.; Spirito, P.; Zeni, L. An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide. Appl. Phys. Lett. 1997, 71, 199–201. [Google Scholar] [CrossRef]
- Fu, P.H.; Huang, T.Y.; Fan, K.W.; Huang, D.W. Optimization for ultrabroadband polarization beam splitters using a genetic algorithm. IEEE Photonics J. 2019, 11, 6600611. [Google Scholar] [CrossRef]
- Dai, D.; Tang, Y.; Bowers, J.E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 2012, 20, 13425. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.; Yevick, D.; Jessop, P. A comparison of modeling methods for ring resonator circuits. J. Opt. Soc. Am. A 2010, 27, 703. [Google Scholar] [CrossRef]
- Shalaby, R.A.; Adib, G.; Sabry, Y.M.; Gad, M.; Khalil, D.; Sabry, Y.M.; Khalil, D. Silicon photonic coupled-ring resonator in nested configuration comprising different length scales. In Proceedings of the 2019 14th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 17–18 December 2019. [Google Scholar] [CrossRef]
- Shalaby, R.A.; Selim, M.A.; Adib, G.A.; Sabry, Y.M.; Gad, M.; Khalil, D. Silicon photonics dual-coupler nested coupled cavities. Proc. SPIE 2019, 10923, 187–193. [Google Scholar] [CrossRef]
- Sanchis, P.; Cuesta-Soto, F.; Blasco, J.; García, J.; Martínez, A.; Marti, J.; Riboli, F.; Pavesi, L. All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2. In Proceedings of the 3rd IEEE International Conference on Group IV Photonics, Ottawa, ON, Canada, 13–15 September 2006; pp. 81–83. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Mahrous, H.; Gad, M.; El Sabbagh, M.; Fedawy, M.; Fikry, W. A High-Speed Electro-Optic Modulator with Optimized Electrode Positions. In Proceedings of the 2018 13th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 18–19 December 2018; pp. 530–535. [Google Scholar] [CrossRef]
- Mahrous, H.; Azmy, M.; Afifi, A.; Abouelainain, A.; Kotb, A.; Fedawy, M.; Fikry, W.; Gad, M.; Selim, D. Design of compact, high-speed and low-loss silicon-on-silica electro-optic modulators. Semicond. Sci. Technol. 2020, 35, 095017. [Google Scholar] [CrossRef]
- Mahrous, H.; Fedawy, M.; El Sabbagh, M.; Fikry, W.; Gad, M. Design of a 90 GHz SOI fin electro-optic modulator for high-speed applications. Appl. Sci. 2019, 9, 4917. [Google Scholar] [CrossRef]
- Mahrous, H.; Fedawy, M.; El Sabbagh, M.; Fikry, W.; Gad, M. A compact 120 GHz monolithic silicon-on-silica electro-optic modulator. Opt. Quantum Electron. 2020, 52, 111. [Google Scholar] [CrossRef]
- Gad, M.; Yevick, D.; Jessop, P.E. Tunable polymer/silicon over insulator ring resonators. Opt. Eng. 2007, 47, 124601. [Google Scholar] [CrossRef]
- Gad, M.; Yevick, D.; Jessop, P.E. High-speed polymer/silicon on insulator ring resonator switch. Opt. Eng. 2008, 47, 094601. [Google Scholar] [CrossRef]
- Liu, K.; Ye, C.R.; Khan, S.; Sorger, V.J. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev. 2015, 9, 172–194. [Google Scholar] [CrossRef]
- Mahrous, H.; Fedawy, M.; El Sabbagh, M.; Fikry, W.; Gad, M. 130 Gbps low-loss electro-optic modulator based on metal-oxide-semiconductor technology. Optik 2020, 217, 164928. [Google Scholar] [CrossRef]
- Ranacher, C.; Carinthian, C.C.; Hedenig, U.; Grille, T.; Lavchiev, V.; Jakoby, B. A photonic silicon waveguide gas sensor using evanescent-wave absorption. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Passaro, V.M.N.; Dell’Olio, F.; Casamassima, B.; De Leonardis, F. Guided-wave optical biosensors. Sensors 2007, 7, 508–536. [Google Scholar] [CrossRef]
- Lai, W.-C.; Chakravarty, S.; Wang, X.; Lin, C.; Chen, R.T. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt. Lett. 2011, 36, 984. [Google Scholar] [CrossRef]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. In Optics InfoBase Conference Papers; Optical Society of America: Rochester, NY, USA, 2008; Volume 16, pp. 4296–4301. [Google Scholar] [CrossRef]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Claes, T.; Molera, J.G.; De Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar] [CrossRef]
- Baird, C.L.; Myszka, D.G. Current and emerging commercial optical biosensors. J. Mol. Recognit. 2001, 14, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomed. Opt. Express 2014, 5, 1636. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Huang, J.; Bowers, J.; Davenport, M.; Tran, M.; Pintus, P.; Komljenovic, T.; Xie, W. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef]
- Gad, M.; Yevick, D.; Jessop, P. High sensitivity ring resonator gyroscopes. Fiber Integr. Opt. 2011, 30, 395–410. [Google Scholar] [CrossRef]
- Labib, M.; Gad, M.; Sabry, Y.M.; Khalil, D. Strip Waveguide Enabling Low Loss for Silicon on Silica Technology in the MIR. In Proceedings of the Proceedings—2018 13th International Conference on Computer Engineering and Systems, ICCES 2018, Cairo, Egypt, 18–19 December 2018. [Google Scholar] [CrossRef]
- Dong, B.; Lee, C.; Lo, G.-Q.; Song, J.; Hu, T.; Liow, T.-Y.; Luo, X. Silicon photonic platforms for mid-infrared applications. Photonics Res. 2017, 5, 417–430. [Google Scholar] [CrossRef]
- Labib, M.; Gad, M.; Sabry, Y.M.; Khalil, D. Optimization of silicon on silica waveguides for mid-infrared applications at 4.28 um. Proc. SPIE 2019, 10923, 109231H. [Google Scholar] [CrossRef]
- Mao, S.; Cheng, L.; Zhao, C.; Khan, F.N.; Li, Q.; Fu, H.Y.; Nadeem Khan, F.; Li, Q.; Fu, H.Y. Inverse design for silicon photonics: From iterative optimization algorithms to deep neural networks. Appl. Sci. 2021, 11, 3822. [Google Scholar] [CrossRef]
- Chrostowski, L.; Hochberg, M.E. Silicon Photonics Design; Cambridge University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Chen, Z.H.; Chen, W.; Cheng, Z.; Lu, G.W.; Wang, J. Ultra-compact spot size converter based on digital metamaterials. Opt. Commun. 2022, 508, 127865. [Google Scholar] [CrossRef]
- Silfies, M.; Kalantarov, D.; Search, C.P. Robust highly stable multi-resonator refractive index sensor. Opt. Commun. 2018, 410, 174–179. [Google Scholar] [CrossRef]
- Ma, H.; Huang, J.; Zhang, K.; Yang, J. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method. Opt. Commun. 2020, 462, 125329. [Google Scholar] [CrossRef]
- Kaalund, C.J.; Peng, G.D. Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications. J. Light. Technol. 2004, 22, 1548–1559. [Google Scholar] [CrossRef]
- Gad, M.; Yevick, D.; Jessop, P. Compound ring resonator circuit for integrated optics applications. J. Opt. Soc. Am. A 2009, 26, 2023. Available online: https://www.osapublishing.org/abstract.cfm?URI=josaa-26-9-2023 (accessed on 16 July 2019). [CrossRef] [PubMed]
- Gad, M.; Ackert, J.; Yevick, D.; Chrostowski, L.; Jessop, P. Ring resonator wavelength division multiplexing interleaver. J. Light. Technol. 2011, 29, 2102–2108. [Google Scholar] [CrossRef]
- Yu, X.; Gen, M. Introduction to Evolutionary Algorithms; Springer: London, UK, 2010; Volume 9, ISBN 9781849961288. [Google Scholar] [CrossRef]
- Mykel, J.; Kochenderfer, T.A.W. Algorithms for Optimization; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 2020, 32, 12363–12379. [Google Scholar] [CrossRef]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Bertsimas, D.; Tsitsiklis, J. Simulated Annealing. Stat. Sci. 1993, 8, 10–15. [Google Scholar] [CrossRef]
- Der Chang, W. An improved real-coded genetic algorithm for parameters estimation of nonlinear systems. Mech. Syst. Signal Process. 2006, 20, 236–246. [Google Scholar] [CrossRef]
- Kapanoglu, M.; Koc, I.O.; Erdogmus, S. Genetic algorithms in parameter estimation for nonlinear regression models: An experimental approach. J. Stat. Comput. Simul. 2007, 77, 851–867. [Google Scholar] [CrossRef]
- Valarmathi, K.; Devaraj, D.; Radhakrishnan, T.K. Real-coded genetic algorithm for system identification and controller tuning. Appl. Math. Model. 2009, 33, 3392–3401. [Google Scholar] [CrossRef]
- Kramer, O. Studies in Computational Intelligence 679 Genetic Algorithm Essentials; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-52155-8. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 0201157675. [Google Scholar]
- Gagnon, D.; Dumont, J.; Dubé, L.J. Beam shaping using genetically optimized two-dimensional photonic crystals. J. Opt. Soc. Am. A 2012, 29, 2673. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Cheng, L.; Mu, X.; Wu, S.; Fu, H.Y. Ultra-Broadband Compact Polarization Beam Splitter Based on Asymmetric Etched Directional Coupler. In Proceedings of the 2020 Conference on Lasers and Electro-Optics Pacific Rim (Cleo-Pr), Sydney, Australia, 2–6 August 2020. [Google Scholar] [CrossRef]
- Yu, Z.; Cui, H.; Sun, X. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 2017, 42, 3093–3096. [Google Scholar] [CrossRef]
- Chamorro-Posada, P.; Gomez-Alcala, R.; Fraile-Pelaez, F.J. Study of optimal all-pass microring resonator delay lines with a genetic algorithm. J. Light. Technol. 2014, 32, 1477–1481. [Google Scholar] [CrossRef]
- Yang, D.; Qin, H.; Li, Y.; Tang, C.; Xu, B.; Cheng, T. A hybrid method for photonic crystal fiber polarization filter based on artificial neural network and genetic algorithms. Opt. Fiber Technol. 2023, 80, 103426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahrous, H.; Fedawy, M.; Abboud, M.; Shaker, A.; Fikry, W.; Gad, M. A Multi-Objective Genetic Algorithm Approach for Silicon Photonics Design. Photonics 2024, 11, 80. https://doi.org/10.3390/photonics11010080
Mahrous H, Fedawy M, Abboud M, Shaker A, Fikry W, Gad M. A Multi-Objective Genetic Algorithm Approach for Silicon Photonics Design. Photonics. 2024; 11(1):80. https://doi.org/10.3390/photonics11010080
Chicago/Turabian StyleMahrous, Hany, Mostafa Fedawy, Mira Abboud, Ahmed Shaker, W. Fikry, and Michael Gad. 2024. "A Multi-Objective Genetic Algorithm Approach for Silicon Photonics Design" Photonics 11, no. 1: 80. https://doi.org/10.3390/photonics11010080
APA StyleMahrous, H., Fedawy, M., Abboud, M., Shaker, A., Fikry, W., & Gad, M. (2024). A Multi-Objective Genetic Algorithm Approach for Silicon Photonics Design. Photonics, 11(1), 80. https://doi.org/10.3390/photonics11010080