1. Introduction
Free-space optical communication (FSOC) has the advantages of high bandwidth, low cost, and large transmission capacity. It is considered to be one of the solutions to the next generation of wireless communication problems and can meet growing communication needs [
1]. However, in fading channels, the primary cause of beam fading is the fluctuation of the optical refractive index induced by atmospheric turbulence. This turbulence-induced fluctuation of the refractive index can give rise to various phenomena, including light intensity flickering, beam expansion, and beam drift, effects that can lead to the occurrence of code errors over extended transmission periods. To mitigate the impact of atmospheric turbulence, forward error correction (FEC) techniques are extensively employed in FSOC systems. Prominent examples of FEC codes utilized in FSOC include turbo codes, low-density parity-check (LDPC) codes, and polar codes [
2]. However, FEC techniques may not be entirely effective in dealing with long strings of bit errors caused by channel fading. In order to further improve the performance of the system, bit-interleaved coded modulation (BICM) is introduced into FSOC as a communication mode. Initially proposed by Zehavi, BICM is a scheme that combines error correction coding, interleaving, and modulation in a serial concatenation manner [
3]. BICM offers lower computational complexity and improved system reliability in the channel [
4].
Theoretical analysis has proven that polar codes can achieve the Shannon limit with linear encoding and decoding complexity, presenting new possibilities in the field of channel coding [
5]. In 2016, Hessam Mahdavifar proposed a polar coding scheme integrated with BICM for reliable communication over multiple channels. Although this scheme demonstrated the same error exponent as Arikan’s polar codes and achieved multi-channel capacity, it lacks experimental validation [
6]. In 2018, Saha introduced error correction techniques to integrated polar codes, presenting a high-performance scheme known as bit-interleaved polar coded modulation with iterative decoding (BIPCM-ID). BIPCM-ID further improved performance by increasing the number of iterations and achieving higher diversity between transmitted bits. However, its application in fading channels remains unexplored [
7]. In 2020, Niu Kai et al. established a comprehensive framework analyzing the theoretical performance of polar codes in block fading channels. Through the analysis of the polar spectrum, they revealed the explicit relationship between diversity order and codeword weight, yet this theoretical framework has not been applied to BIPCM systems [
8]. In 2022, Hyosang Ju et al. proposed an interleaving method that achieves full diversity at a rate of 0.5 in the presence of two fading blocks. This indicates the potential of BICM techniques to optimize communication links in fading channels [
9]. Also in 2022, Jiang Lun’s team introduced the multi-aperture transmission and BICM techniques into FSOC, aiming to suppress atmospheric turbulence. By leveraging a random interleaver, they improved the minimum Euclidean distance between codewords, enhancing the link’s resistance to fading. This research suggests that further exploration of advanced BICM techniques could strengthen the suppression capability against atmospheric turbulence and improve the environmental conditions of space links [
10]. Traditional polar coding methods have limitations in effectively solving the problem of a long string of bit errors.
We introduce a scheme of adaptive bit-interleaved polar coded modulation (A-BIPCM) to address the issue of a long string of bit errors caused by turbulence in FSOC systems. The A-BIPCM scheme employs the analysis of pairwise error probability (PEP) and polar spectrum (PS) to evaluate the minimum logarithmic upper bound weight (MLUW) approach, we use MLUW to construct the adaptive interleaving criterion. Simulations were conducted to evaluate the bit error rate (BER) performance of both conventional polar codes and the A-BIPCM method across various levels of turbulent channel intensities. The A-BIPCM scheme achieves a 0.96 dB improvement in weak turbulence, a 1.66 dB improvement in medium turbulence, and a 1.35 dB improvement in strong turbulence. Furthermore, experimental validation confirms that the adoption of the A-BIPCM technique effectively enhances the transmission quality of FSOC systems operating in weak turbulence channels. Which proves to be effective in combating a long string of bit errors induced by turbulence.
3. Performance Simulation Results and Discussion of A-BIPCM under Different Turbulence Conditions
Based on the method mentioned above, this paper conducts simulation analysis on key parameters such as turbulence intensity, decoding width, and before and after adaptive interleaving to evaluate the bit error performance of A-BIPCM under atmospheric turbulence. To achieve this goal, this article introduces CRC into the traditional SCL to improve decoding performance and uses CRC check to verify the accuracy of the decoding results, which has proven potential in short block length delay-constrained systems. In order to provide a comprehensive performance evaluation and take into account the application requirements in the actual system, during the simulation process, the following parameters were set: code length N = 2048, code rate R = 0.5, wavelength nm, CRC check code length is 8, and the number of iterations is set to 106. In addition, simulation analysis was also conducted on different list sizes, which were, respectively, set to L = 1, L = 4, and L = 8.
In this work, a comparison is made between the proposed A-BIPCM scheme and the conventional polar code encoding and decoding. The comparison is based on simulations that analyze the change in BER with SNR under weak turbulence, medium turbulence, and strong turbulence conditions (as shown in
Figure 2a–c). The Rytov variances under the three turbulence conditions are 0.2, 1.6, and 3.5, respectively. The A-BIPCM scheme is discussed, particularly focusing on the differences observed under different code rates and the list size. To investigate the performance gap between polar codes and the Shannon limit in turbulent channels from an information theory perspective, the Shannon limit curve is also plotted for each turbulent condition, considering a code rate of 0.5. The simulation results indicate that at the BER = 3.8 × 10
−3, code rate R
2 = 0.75, the proposed A-BIPCM scheme achieves an improvement compared to conventional polar code encoding and decoding. Specifically, it achieves an improvement of 0.94 dB under weak turbulence conditions, a 1.44 dB improvement under medium turbulence conditions, and a 1.25 dB improvement under strong turbulence conditions. Furthermore, at a code rate of R
2 = 0.5, comparing the A-BIPCM scheme with conventional polar coding and decoding, significant improvements are observed in various turbulence conditions. Specifically, in the case of weak turbulence, an improvement of 0.96 dB is observed. In the case of medium turbulence, a notable improvement of 1.66 dB is observed. Furthermore, in the case of strong turbulence, a substantial improvement of 1.35 dB is observed. When the decoding width of the A-BIPCM scheme is increased from 1 to 4 and 8, additional improvements are observed. In weak turbulence, there is a 1.63 dB improvement and a 2.18 dB improvement. In medium turbulence, improvements of 2.37 dB and 3.22 dB are achieved, and in strong turbulence, improvements of 1.913 dB and 2.75 dB are achieved. The simulation results demonstrate that as the turbulence intensity increases, there is a decrease in bit error performance, reflecting the adverse impact of atmospheric turbulence on channel quality. Additionally, under the same turbulent conditions, as the SNR increases, the BER performance improves.
4. Experimental Verification Results and Discussion of FSOC System Performance under Weak Turbulence Conditions
To assess the actual performance of the A-BIPCM scheme in combating atmospheric turbulence, this work conducted an experimental verification study on the performance of the FSOC system based on the A-BIPCM scheme. The simulation channel had dimensions of 2 m × 1 m × 0.35 m and was designed to simulate a weak turbulence channel. In this experimental setup, the simulation channel utilized the air between hot and cold plates to create an environment that mimics real atmospheric channels. Convection was employed to replicate the turbulent characteristics of the atmosphere. The intensity of the simulated turbulence was adjusted by controlling the temperature difference between the hot and cold plates, which closely resembles the characteristics of actual channels affected by atmospheric turbulence. The atmospheric coherence length , an important parameter in characterizing the turbulence effects, was measured and determined based on the fitted curve. The linear coefficient is the exponential coefficient of the temperature difference between the heating plate and the cooling plate. However, due to limitations in generating turbulence conditions in our laboratory, we can only simulate weak turbulence conditions using the atmospheric turbulence simulation channel.
Figure 3 presents a schematic block diagram of the experimental system used to verify the performance of free-space wireless laser communication employing IM/DD. At the transmitting end of the system, a C-band continuous wave laser with a wavelength of 1550.116 nm and an output power of 10 dBm is utilized. Following polarization controller (PC) adjustment, the output power registers at 7.38 dBm. The polar code encoding modulation signal is generated offline using MATLAB and then loaded into an arbitrary waveform generator (AWG). The AWG has a 3 dB analog bandwidth of 25 GHz and a sampling rate of 32 GSa/s. It is responsible for generating the transmitted RF signal and performs 8 times interpolation, achieving an oversampling rate of 4 GS/s. In the experiment, a microwave amplifier (MA) is employed to amplify the amplitude of the output radio frequency signal from 237 mV to 4.5 V, which is necessary to drive a 10 GHz Mach-Zehnder modulator (MZM). The bias voltage of the MZM is set to 4 V. The optical signal output from the PC is then input into the MZM, and the amplified signal source from the microwave amplifier is added to it. Subsequently, the modulation output of the MZM is directed to the fiber collimator (FC). At the receiving end of the system, the FC is used to couple the received beam into an optical fiber. To control the optical power, a variable optical attenuator (VOA) is employed. The VOA enables real-time adjustment of the optical power of the received signal through attenuation. An avalanche photodiode detector (APD) is utilized for receiving the optical signals. The power input voltage of the detector is set to 12 V, and it has a saturated optical power of −16 dBm and the lowest detectable optical power of −27 dBm. For signal capture and analysis, a real-time digital storage oscilloscope (DSO) with a sampling rate of 20 GSa/s and a bandwidth of 4 GHz is utilized. The DSO captures the signal during the offline process, allowing for subsequent signal recovery and analysis. Offline digital signal processing (DSP) is performed using MATLAB to recover the transmitted signal. During the offline processing, the start and end positions of the transmission sequence are determined based on the flag bits added to the transmission sequence. The signal is then sampled, and appropriate thresholds are set to identify continuous sampling points as high and low levels of the binary sequence. The binary sequence is deinterleaved and sent to the decoder for decoding operations. The original bit sequence is restored using the Successive Cancellation List (SCL) decoding method combined with CRC.
Figure 4 illustrates the experimental system diagram.
Figure 5 depicts the random fluctuation of the time-domain optical signal data over a certain period. In
Figure 6, the three conditions represented are as follows: (a) Under certain conditions, where the temperature of the upper and lower plates of the atmospheric turbulence simulation channel is 80 °C and the atmospheric coherence length is r
0 = 1.839 at a specific value. In this case, the optical signal experiences minimal jitter in the channel, and the energy of the signal is relatively concentrated and stable. (b) Under different conditions, with the temperature of the upper and lower plates set to 120 °C and the corresponding atmospheric coherence length r
0 = 1.384, a slightly stronger fluctuation in the time-domain waveform of the optical signal and a slightly wider dispersion of its energy is indicated. (c) Under further different conditions, where the temperature of the upper and lower plates is set to 160 °C and the corresponding atmospheric coherence length is r
0 = 0.955 considered, a greater fluctuation in the time-domain waveform of the optical signal in the weak turbulence channel and a wider dispersion of its energy is indicated. The optical output power jitter curve is shown in
Figure 5.
Figure 6 presents a statistical analysis of the BER under weak turbulence conditions. The comparison chart depicts the BER performance between the conventional polar code encoding and decoding scheme (represented by the dashed line) and the proposed A-BIPCM scheme (represented by the solid line). In
Figure 6a, when the atmospheric coherence length r
0 = 0.955, T = 160, the optical power of the detector is −16 dBm. The traditional polar code encoding and decoding performance at BER = 9.13 × 10
−4, whereas the A-BIPCM scheme exhibits a significantly higher performance at BER = 7.02 × 10
−5. The BER has been improved by representing an order of magnitude. Furthermore, considering the desired BER = 3.8 × 10
−3 of the system, the conventional polar coding and decoding scheme requires a received optical power greater than −16.98 dBm, and the A-BIPCM scheme requires a received optical power greater than −17.71 dBm. Thus, the A-BIPCM scheme achieves an improvement of approximately 0.73 dBm in terms of the required received optical power. In
Figure 6b, when the atmospheric coherence length r
0 = 1.384, T = 120, the optical power of the detector is −16 dBm. The traditional polar code encoding and decoding performance at BER = 6.36 × 10
−4, whereas the A-BIPCM scheme exhibits a significantly higher performance at BER = 6.82 × 10
−5. The BER has been improved by representing an order of magnitude. Furthermore, considering the desired BER = 3.8 × 10
−3 of the system, the conventional polar coding and decoding scheme requires a received optical power greater than −17.03 dBm, and the A-BIPCM scheme requires a received optical power greater than −18.08 dBm. Thus, the A-BIPCM scheme achieves an improvement of approximately 1.05 dBm in terms of the required received optical power.
In
Figure 6c, when the atmospheric coherence length r
0 = 1.839, T = 80, the optical power of the detector is −16 dBm. The traditional polar code encoding and decoding performance at BER = 7.36 × 10
−5, whereas the A-BIPCM scheme exhibits a significantly higher performance at BER = 7.13 × 10
−6. The BER has been improved by representing an order of magnitude. Furthermore, considering the desired BER = 3.8 × 10
−3 of the system, the conventional polar coding and decoding scheme requires a received optical power greater than −17.69 dBm, and the A-BIPCM scheme requires a received optical power greater than −18.38 dBm. Thus, the A-BIPCM scheme achieves an improvement of approximately 0.69 dBm in terms of the required received optical power. In
Figure 6d, when the atmospheric coherence length r
0 = 3.282, T = 50, the optical power of the detector is −16 dBm. The traditional polar code encoding and decoding performance at BER = 2.36 × 10
−5, whereas the A-BIPCM scheme exhibits a significantly higher performance at BER = 2.11 × 10
−6. The BER has been improved by representing an order of magnitude. Furthermore, considering the desired BER = 3.8 × 10
−3 of the system, the conventional polar coding and decoding scheme requires a received optical power greater than −17.69 dBm, and the A-BIPCM scheme requires a received optical power greater than −18.42 dBm. Thus, the A-BIPCM scheme achieves an improvement of approximately 0.73 dBm in terms of the required received optical power. Under weak turbulence conditions, the A-BIPCM scheme can provide better BER performance compared with traditional polar code encoding and decoding. In addition, as the received optical power increases, the BER shows a downward trend and increases by one order of magnitude. This shows that atmospheric turbulence has a significant impact on channel quality, and increasing transmit power can improve the information transmission quality of atmospheric optical channels.