Numerical Optimization Technique of Multilayer SERS Substrates
Abstract
:1. Introduction
2. Principles of Numerical Modeling of SERS Enhancement
2.1. Theoretical Background, Local Field and Purcell Factor
2.2. Principles of Calculation of the Purcell Factor and SERS Enhancement for an Emitter Close to Spherical Nanoantenna
3. Calculation of the Purcell Factor and SERS Enhancement for an Emitter near a Nanoantenna in the Form of a Chain of Spheres
4. Discussion: CNT Arrays as a 3D Substrate for Plasmonic Nanoparticles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phan-Quang, G.C.; Han, X.; Koh, C.S.L.; Sim, H.Y.F.; Lay, C.L.; Leong, S.X.; Lee, Y.H.; Pazos-Perez, N.; Alvarez-Puebla, R.A.; Ling, X.Y. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. Acc. Chem. Res. 2019, 52, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, I.V.; Gulyuk, A.V. Electromagnetic SERS Effect in Carbon Nanotube Systems. Superlattices Microstruct. 2015, 87, 103–108. [Google Scholar] [CrossRef]
- Bharati, M.S.S.; Soma, V.R. Flexible SERS Substrates for Hazardous Materials Detection: Recent Advances. Opto-Electron. Adv. 2021, 4, 210048. [Google Scholar] [CrossRef]
- Novotny, L.; van Hulst, N. Antennas for Light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Sauvan, C.; Hugonin, J.P.; Maksymov, I.S.; Lalanne, P. Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators. Phys. Rev. Lett. 2013, 110, 237401. [Google Scholar] [CrossRef] [PubMed]
- Greffet, J.-J. Applied Physics. Nanoantennas for Light Emission. Science 2005, 308, 1561–1563. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.V.; Valero, A.C.; Tarkhov, M.; Bobrovs, V.; Redka, D.; Shalin, A.S. Transparent Hybrid Anapole Metasurfaces with Negligible Electromagnetic Coupling for Phase Engineering. Nanophotonics 2021, 10, 4385–4398. [Google Scholar] [CrossRef]
- Terekhov, P.D.; Evlyukhin, A.B.; Shalin, A.S.; Karabchevsky, A. Polarization-Dependent Asymmetric Light Scattering by Silicon Nanopyramids and Their Multipoles Resonances. J. Appl. Phys. 2019, 125, 173108. [Google Scholar] [CrossRef]
- Kucherik, A.; Kutrovskaya, S.; Osipov, A.; Gerke, M.; Chestnov, I.; Arakelian, S.; Shalin, A.S.; Evlyukhin, A.B.; Kavokin, A.V. Nano-Antennas Based on Silicon-Gold Nanostructures. Sci. Rep. 2019, 9, 338. [Google Scholar] [CrossRef]
- Ginzburg, P. Cavity Quantum Electrodynamics in Application to Plasmonics and Metamaterials. Rev. Phys. 2016, 1, 120–139. [Google Scholar] [CrossRef]
- Ginzburg, P. Accelerating Spontaneous Emission in Open Resonators. Ann. Phys. 2016, 528, 571–579. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lai, R.; Chen, H.; Zhou, Z.; Yi, Z.; Tang, B.; Chen, J.; Yi, Y.; Tang, C.; Zhang, J.; Sun, T. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance. Micromachines 2023, 14, 1802. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Yi, Z.; Zhang, J.; Xu, X.; Tang, B.; Li, G.; Zeng, L.; Chen, J.; Sun, T. A Tunable Broadband Absorber in the Terahertz Band Based on the Proportional Structure of a Single Layer of Graphene. Diam. Relat. Mater. 2023, 140, 110481. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, J.; Zhang, C.; Chen, C.; Xu, S.; Li, C.; Li, Z.; Zhang, S.; Liu, A.; Man, B. Flexible and Stretchable SERS Substrate Based on a Pyramidal PMMA Structure Hybridized with Graphene Oxide Passivated AgNPs. Appl. Surf. Sci. 2018, 455, 1171–1178. [Google Scholar] [CrossRef]
- Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M.; García De Abajo, F.J. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics 2017, 4, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.A. Plasmonic Field Enhancement and SERS in the Effective Mode Volume Picture. Opt. Express 2006, 14, 1957. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, Z.; Qi, J.; Zhang, S.; Guo, K.; Zhao, S. Modeling and Theoretical Analysis of the SERS Enhancement Factor Considering the Electronic Structural Energy. IEEE Access 2021, 9, 121279–121287. [Google Scholar] [CrossRef]
- Kadochkin, A.S.; Shalin, A.S.; Ginzburg, P. Granular Permittivity Representation in Extremely Near-Field Light-Matter Interaction Processes. ACS Photonics 2017, 4, 2137–2143. [Google Scholar] [CrossRef]
- Neuman, T.; Aizpurua, J.; Esteban, R. Quantum Theory of Surface-Enhanced Resonant Raman Scattering (SERRS) of Molecules in Strongly Coupled Plasmon-Exciton Systems. Nanophotonics 2020, 9, 295–308. [Google Scholar] [CrossRef]
- Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-Based SERS Biosensor: From Substrate Design to Sensing and Bioapplication. NPG Asia Mater. 2021, 13, 8. [Google Scholar] [CrossRef]
- Visaveliya, N.R.; Mazetyte-Stasinskiene, R.; Köhler, J.M. General Background of SERS Sensing and Perspectives on Polymer-Supported Plasmon-Active Multiscale and Hierarchical Sensor Particles. Adv. Opt. Mater. 2022, 10, 2102001. [Google Scholar] [CrossRef]
- Vo-Dinh, T. SERS Chemical Sensors and Biosensors: New Tools for Environmental and Biological Analysis. Sens. Actuators B 1995, 29, 189. [Google Scholar] [CrossRef]
- Shi, R.; Liu, X.; Ying, Y. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. J. Agric. Food Chem. 2018, 66, 6525–6543. [Google Scholar] [CrossRef]
- Son, J.; Kim, G.-H.; Lee, Y.; Lee, C.; Cha, S.; Nam, J.-M. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. J. Am. Chem. Soc. 2022, 144, 22337–22351. [Google Scholar] [CrossRef] [PubMed]
- Zha, Z.; Liu, R.; Yang, W.; Li, C.; Gao, J.; Shafi, M.; Fan, X.; Li, Z.; Du, X.; Jiang, S. Surface-Enhanced Raman Scattering by the Composite Structure of Ag NP-Multilayer Au Films Separated by Al2O3. Opt. Express 2021, 29, 8890. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.X.; Zhu, Y.Y.; Wei, Y.; Pei, H. Study on Surface Enhanced Raman Scattering of Au and Au@Al2O3 Spherical Dimers Based on 3D Finite Element Method. Sci. Rep. 2021, 11, 8391. [Google Scholar] [CrossRef]
- Yan, C.-C.; Che, Z.-L.; Yang, W.-Y.; Wang, X.-D.; Liao, L.-S. Deep-Red and near-Infrared Organic Lasers Based on Centrosymmetric Molecules with Excited-State Intramolecular Double Proton Transfer Activity. Opto-Electron. Adv. 2023, 6, 230007. [Google Scholar] [CrossRef]
- Stockman, M.I. Electromagnetic Theory of SERS. In Surface-Enhanced Raman Scattering—Physics and Applications; Kneipp, K., Moscovits, M., Kneipp, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 47–65. [Google Scholar]
- Lee, S.; Hahm, M.G.; Vajtai, R.; Hashim, D.P.; Thurakitseree, T.; Chipara, A.C.; Ajayan, P.M.; Hafner, J.H. Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates. Adv. Mater. 2012, 24, 5261–5266. [Google Scholar] [CrossRef]
- Lee, M.K.; Seo, J.; Cho, S.J.; Jo, Y.; Kim, S.; Kang, Y.; Lee, H. Novel 3D Arrays of Gold Nanostructures on Suspended Platinum-Coated Carbon Nanotubes as Surface-Enhanced Raman Scattering Substrates. Mater. Lett. 2012, 81, 9–12. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, K.; Miao, J.; Wang, Z.; Tian, B.; Zhang, L.; Li, Q.; Fan, S.; Jiang, K. Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes. Nano Lett. 2010, 10, 1747–1753. [Google Scholar] [CrossRef]
- Han, Y.; Wu, S.R.; Tian, X.D.; Zhang, Y. Optimizing the SERS Performance of 3D Substrates through Tunable 3D Plasmonic Coupling toward Label-Free Liver Cancer Cell Classification. ACS Appl. Mater. Interfaces 2020, 12, 28965–28974. [Google Scholar] [CrossRef] [PubMed]
- Maslovski, S.I.; Simovski, C.R. Purcell Factor and Local Intensity Enhancement in Surface-Enhanced Raman Scattering. Nanophotonics 2019, 8, 429–434. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999; ISBN 0-521-64222-1. [Google Scholar]
- Falkovsky, L.A. Optical Properties of Graphene and IV–VI Semiconductors. Uspekhi Fiz. Nauk. 2008, 178, 923. [Google Scholar] [CrossRef]
- Kadochkin, A.S.; Moiseev, S.G.; Svetukhin, V.V.; Saurov, A.N.; Zolotovskii, I.O. Excitation of Ultraslow High-q Surface Plasmon Polariton Modes in Dense Arrays of Double-Walled Carbon Nanotubes. Ann. Phys. 2022, 534, 2100438. [Google Scholar] [CrossRef]
- Kildishev, A.V. Graphene Paves the Way for Next-Generation Plasmonics. Available online: https://www.comsol.com/story/graphene-paves-the-way-for-next-generation-plasmonics-53551 (accessed on 25 December 2023).
- Martín-Moreno, L.; De Abajo, F.J.G.; García-Vidal, F.J. Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. Phys. Rev. Lett. 2015, 115, 173601. [Google Scholar] [CrossRef]
- Kadochkin, A.S.; Moiseev, S.; Dadoenkova, Y.S.; Bentivegna, F.; Svetukhin, V.; Zolotovsky, I.O. Resonant Amplification of Surface Plasmon Polaritons with an Electric Current in a Single-Walled Carbon Nanotube Lying on a Spatially Modulated Substrate. J. Opt. 2020, 22, 125002. [Google Scholar] [CrossRef]
- Falkovsky, L.A.; Pershoguba, S.S. Optical Far-Infrared Properties of a Graphene Monolayer and Multilayer. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 153410. [Google Scholar] [CrossRef]
- Yu, P.; Fesenko, V.I.; Tuz, V.R. Dispersion Features of Complex Waves in a Graphene-Coated Semiconductor Nanowire. Nanophotonics 2018, 7, 925–934. [Google Scholar] [CrossRef]
- Nikitin, A.Y.; Guinea, F.; García-Vidal, F.J.; Martín-Moreno, L. Edge and Waveguide Terahertz Surface Plasmon Modes in Graphene Microribbons. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 161407. [Google Scholar] [CrossRef]
- Hajaj, E.M.; Shtempluk, O.; Kochetkov, V.; Razin, A.; Yaish, Y.E. Chemical Potential of Inhomogeneous Single-Layer Graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 045128. [Google Scholar] [CrossRef]
- De Abajo, F.J.G. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics 2014, 1, 133–152. [Google Scholar] [CrossRef]
- Szabó, A.; Bakos, L.P.; Karajz, D.; Gyulavári, T.; Tóth, Z.-R.; Pap, Z.; Szilágyi, I.M.; Igricz, T.; Parditka, B.; Erdélyi, Z.; et al. Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition. Materials 2019, 12, 1095. [Google Scholar] [CrossRef] [PubMed]
- Janas, D.; Koziol, K.K.K. The Influence of Metal Nanoparticles on Electrical Properties of Carbon Nanotubes. Appl. Surf. Sci. 2016, 376, 74–78. [Google Scholar] [CrossRef]
- Olivares, F.; Peón, F.; Henríquez, R.; del Río, R.S. Strategies for Area-Selective Deposition of Metal Nanoparticles on Carbon Nanotubes and Their Applications: A Review. J. Mater. Sci. 2022, 57, 2362–2387. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadochkin, A.; Savitskiy, A.; Korobko, D.; Kitsyuk, E. Numerical Optimization Technique of Multilayer SERS Substrates. Photonics 2024, 11, 12. https://doi.org/10.3390/photonics11010012
Kadochkin A, Savitskiy A, Korobko D, Kitsyuk E. Numerical Optimization Technique of Multilayer SERS Substrates. Photonics. 2024; 11(1):12. https://doi.org/10.3390/photonics11010012
Chicago/Turabian StyleKadochkin, Alexey, Andrey Savitskiy, Dmitry Korobko, and Evgeny Kitsyuk. 2024. "Numerical Optimization Technique of Multilayer SERS Substrates" Photonics 11, no. 1: 12. https://doi.org/10.3390/photonics11010012
APA StyleKadochkin, A., Savitskiy, A., Korobko, D., & Kitsyuk, E. (2024). Numerical Optimization Technique of Multilayer SERS Substrates. Photonics, 11(1), 12. https://doi.org/10.3390/photonics11010012