Self-Adaptive Multistage Infrared Radiative Thermo-Optic Modulators Based on Phase-Change Materials
Abstract
:1. Introduction
2. Design and Optimization of Multiple-Stack Film
3. Calculation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Ren, W. Mid-infrared optical modulator enabled by photothermal effect. Light Sci. Appl. 2023, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F. All-optical plasmonic modulator based on graphene/black phosphorus heterostructure with angle-dependence in visible regime. Opt. Commun. 2023, 530, 129122. [Google Scholar] [CrossRef]
- Lyu, X.; Heßler, A.; Wang, X.; Cao, Y.; Song, L.; Ludwig, A.; Wuttig, M.; Taubner, T. Combining Switchable Phase-Change Materials and Phase-Transition Materials for Thermally Regulated Smart Mid-Infrared Modulators. Adv. Opt. Mater. 2021, 9, 2100417. [Google Scholar] [CrossRef]
- Ji, H.; Zhao, Y.; Lu, M.; Tao, J.; Chen, Y.; Ou, Y.; Wang, Y.; Mao, Y. Novel warm/cool-tone switchable VO2-based smart window composite films with excellent optical performance. Ceram Int 2023, 49, 22630–22635. [Google Scholar] [CrossRef]
- Tang, K.; Dong, K.; Li, J.; Gordon, M.P.; Reichertz, F.G.; Kim, H.; Rho, Y.; Wang, Q.; Lin, C.Y.; Grigoropoulos, C.P.; et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021, 374, 1504–1509. [Google Scholar] [CrossRef]
- Ogawa, S.; Kimata, M. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review. Materials 2018, 11, 458. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Z.; Zhang, H.; Wang, M. Discussion on the development status of optical anti-reflective coating technology. In Proceedings of the 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Micro- and Nano-Optics, Catenary Optics, and Subwavelength Electromagnetics, Chengdu, China, 14–17 June 2021; 2021; Volume 120702, p. 120702N. [Google Scholar]
- Choi, H.-J.; Huh, D.; Jun, J.; Lee, H. A review on the fabrication and applications of sub-wavelength anti-reflective surfaces based on biomimetics. Appl. Spectrosc. Rev. 2019, 54, 719–735. [Google Scholar] [CrossRef]
- Halder, S.; Gupta, N.; Behere, R.P.; Kuila, B.K.; Chakraborty, C. Vis-to-NIR electrochromism and bright-to-dark electrofluorochromism in a triazine and thiophene-based three-dimensional covalent polymer. Mol. Syst. Des. Eng. 2022, 7, 1658–1669. [Google Scholar] [CrossRef]
- Sui, C.; Pu, J.; Chen, T.-H.; Liang, J.; Lai, Y.-T.; Rao, Y.; Wu, R.; Han, Y.; Wang, K.; Li, X.; et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 2023, 6, 428–437. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Xue, P.; Valenzuela, C.; Chen, Y.; Yang, X.; Wang, L.; Feng, W. Three-Dimensional Electrochromic Soft Photonic Crystals Based on MXene-Integrated Blue Phase Liquid Crystals for Bioinspired Visible and Infrared Camouflage. Angew Chem. Int. Ed. Engl. 2022, 61, e202211030. [Google Scholar] [CrossRef] [PubMed]
- Bowei, X.; Wenjie, Z.; Junming, Z.; Linhua, L. VO2-based superposed Fabry-Perot multilayer film with a highly enhanced infrared emittance and emittance tunability for spacecraft thermal control. Opt. Express 2022, 30, 34314–34327. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Zhang, X.; Dong, W.; Lu, L.; Zhou, X.; Zhuang, X.; Deng, J.; Cheng, X.; Li, G.; Simpson, R.E. Tuneable Thermal Emission Using Chalcogenide Metasurface. Adv. Opt. Mater. 2018, 6, 1800169. [Google Scholar] [CrossRef]
- Du, K.K.; Li, Q.; Lyu, Y.B.; Ding, J.C.; Lu, Y.; Cheng, Z.Y.; Qiu, M. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl. 2017, 6, e16194. [Google Scholar] [CrossRef]
- Heßler, A.; Wahl, S.; Kristensen, P.T.; Wuttig, M.; Busch, K.; Taubner, T. Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances. Nanophotonics 2022, 11, 3871–3882. [Google Scholar] [CrossRef]
- Hessler, A.; Wahl, S.; Leuteritz, T.; Antonopoulos, A.; Stergianou, C.; Schon, C.F.; Naumann, L.; Eicker, N.; Lewin, M.; Mass, T.W.W.; et al. In3SbTe2 as a programmable nanophotonics material platform for the infrared. Nat. Commun. 2021, 12, 924. [Google Scholar] [CrossRef]
- Kim, H.; Cheung, K.; Auyeung, R.C.Y.; Wilson, D.E.; Charipar, K.M.; Pique, A.; Charipar, N.A. VO2-based switchable radiator for spacecraft thermal control. Sci. Rep. 2019, 9, 11329. [Google Scholar] [CrossRef]
- Meng, C.; Zeng, Y.; Lu, D.; Zou, H.; Wang, J.; He, Q.; Yang, X.; Xu, M.; Miao, X.; Zhang, X.; et al. Broadband hyperbolic thermal metasurfaces based on the plasmonic phase-change material In3SbTe2. Nanoscale 2023, 15, 6306–6312. [Google Scholar] [CrossRef]
- Shrewsbury, B.K.; Morsy, A.M.; Povinelli, M.L. Multilayer planar structure for optimized passive thermal homeostasis. Opt. Mater. Express 2022, 12, 1442. [Google Scholar] [CrossRef]
- Su, Y.; Deng, Z.; Qin, W.; Wang, X.; Gong, R. Adaptive infrared camouflage based on quasi-photonic crystal with Ge2Sb2Te5. Opt. Commun. 2021, 497, 127203. [Google Scholar] [CrossRef]
- Wu, C.H.; Qiu, J.W.; Xu, M.; Wang, J.B.; Zuo, H.P.; Zhang, B.S.; Li, L.; Zhao, Y.Z. Optimization of Thermal Emittance Tuneability of La (Sr, Ca)MnO3 Thin-Film Materials in 173-373 K. Key Eng. Mater. 2013, 575–576, 297–301. [Google Scholar]
- Zha, W.; Zhu, Y.; Ma, B.; Yu, J.; Ghosh, P.; Qiu, M.; Li, Q. Nonvolatile High-Contrast Whole Long-Wave Infrared Emissivity Switching Based on In3SbTe2. ACS Photonics 2022, 7, 2165–2172. [Google Scholar] [CrossRef]
- Chi, J.; Liu, H.; Wang, Z.; Huang, N. Efficient mid-infrared wavelength converter based on plasmon-enhanced nonlinear response in graphene nanoribbons. J. Phys. D Appl. Phys. 2021, 55, 115101. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, Z.; Zhang, J.; Xu, W.; Wu, F.; Yuan, X.; Guo, C.; Qin, S. Visible light emission enhancement from a graphene-based metal Fabry-Perot cavity. Opt. Express 2022, 30, 41110–41117. [Google Scholar] [CrossRef]
- Lu, K.; Luo, M.; Wang, Y.; Son, B.; Yu, Y.; Nam, D. Ultrafast light emission at telecom wavelengths from a wafer-scale monolayer graphene enabled by Fabry-Perot interferences. Opt. Lett. 2022, 47, 4668–4671. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Shimatani, M.; Fukushima, S.; Kimata, M.; Fulop, G.F.; Kimata, M.; Zheng, L.; Andresen, B.F.; Miller, J.L.; Kim, Y.-H. Electrically tunable graphene nanoribbon metasurface absorbers for multispectral infrared detection. Infrared Technol. Appl. XLVIII 2022, 12107, 1210727. [Google Scholar]
- Mansha, S.; Moitra, P.; Xu, X.; Mass, T.W.W.; Veetil, R.M.; Liang, X.; Li, S.Q.; Paniagua-Dominguez, R.; Kuznetsov, A.I. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci. Appl. 2022, 11, 141. [Google Scholar] [CrossRef]
- Sadeghi, H.; Talebi, V.; Soofi, H. Ultra-narrow band widely tunable photodetector based on a graphene-liquid crystal hybrid structure. Opt. Commun. 2022, 515, 128214. [Google Scholar] [CrossRef]
- Zheng, J.; He, Z.; Li, C.; Miao, Z.; Wang, D.; Luan, Y.; Li, Y.; Zhao, Y.; Cao, H.; He, W.; et al. Reflectance-enhanced liquid crystal displays and thermochromic multi-color patterning. Dye Pigment. 2022, 205, 110598. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W. Progress in dynamic emissivity regulation: Control methods, material systems, and applications. Mater. Chem. Front. 2021, 5, 6315–6332. [Google Scholar] [CrossRef]
- Kim, C.; Kim, Y.; Lee, M. Laser-Induced Tuning and Spatial Control of the Emissivity of Phase-Changing Ge2Sb2Te5 Emitter for Thermal Camouflage. Adv. Mater. Technol. 2022, 7, 2101349. [Google Scholar] [CrossRef]
- Alrayk, Y.K.A.; Younis, B.M.; El Deeb, W.S.; Hameed, M.F.O.; Obayya, S.S.A. MIR optical modulator based on silicon-on-calcium fluoride platform with VO2 material. Opt. Quantum Electron. 2021, 53, 559. [Google Scholar] [CrossRef]
- Chamoli, S.K.; Verma, G.; Singh, S.C.; Guo, C. Phase change material-based nano-cavity as an efficient optical modulator. Nanotechnology 2020, 32, 095207. [Google Scholar] [CrossRef]
- Markov, P.; Appavoo, K.; Haglund, R.F., Jr.; Weiss, S.M. Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling. Opt. Express 2015, 23, 6878–6887. [Google Scholar] [CrossRef] [PubMed]
- Tanyi, G.B.; Sun, M.; Lim, C.; Unnithan, R.R. Design of an On-Chip Plasmonic Modulator Based on Hybrid Orthogonal Junctions Using Vanadium Dioxide. Nanomaterials 2021, 11, 2507. [Google Scholar] [CrossRef] [PubMed]
- Waldecker, L.; Miller, T.A.; Rude, M.; Bertoni, R.; Osmond, J.; Pruneri, V.; Simpson, R.E.; Ernstorfer, R.; Wall, S. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 2015, 14, 991–995. [Google Scholar] [CrossRef]
- Wang, X.; Qi, H.; Hu, X.; Yu, Z.; Ding, S.; Du, Z.; Gong, Q. Advances in Photonic Devices Based on Optical Phase-Change Materials. Molecules 2021, 26, 2813. [Google Scholar] [CrossRef]
- Younis, B.M.; Heikal, A.M.; Hussein, M.; Obayya, S.S.A.; Hameed, M.F.O. Mid-infrared optical modulator based on D-shaped PCF. Opt. Express 2019, 27, 37454–37468. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Bai, W.; Han, Y.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Xu, S.; Xie, W. Chipscale plasmonic modulators and switches based on metal–insulator–metal waveguides with Ge2Sb2Te5. J. Nanophotonics 2019, 13, 046009. [Google Scholar] [CrossRef]
- Meng, Y.; Behera, J.K.; Ke, Y.; Chew, L.; Wang, Y.; Long, Y.; Simpson, R.E. Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5. Appl. Phys. Lett. 2018, 113, 071901. [Google Scholar] [CrossRef]
- Kasali, S.O.; Ordonez-Miranda, J.; Joulain, K. Optimization of the rectification factor of radiative thermal diodes based on two phase-change materials. Int. J. Heat Mass Transf. 2020, 154, 119739. [Google Scholar] [CrossRef]
- Liu, Y.; Caratenuto, A.; Zheng, Y. GST-VO2-based near-field multistage radiative thermal rectifier. Opt. Mater. Express 2022, 12, 2135. [Google Scholar] [CrossRef]
- Verleur, H.W.; Barker, A.S.; Berglund, C.N. Optical Properties of VO2 between 0.25 and 5 eV. Phys. Rev. 1968, 172, 788–798. [Google Scholar] [CrossRef]
- Mott, N.F.; Friedman, L. Metal-insulator transitions in VO2, Ti2O3 and Ti2-xVxO3. Philos. Mag. 1974, 30, 389–402. [Google Scholar] [CrossRef]
- Cavalleri, A.; Dekorsy, T.; Chong, H.H.W.; Kieffer, J.C.; Schoenlein, R.W. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale. Phys. Rev. B 2004, 70, 161102. [Google Scholar] [CrossRef]
- Ramirez-Rincon, J.A.; Gomez-Heredia, C.L.; Corvisier, A.; Ordonez-Miranda, J.; Girardeau, T.; Paumier, F.; Champeaux, C.; Dumas-Bouchiat, F.; Ezzahri, Y.; Joulain, K.; et al. Thermal hysteresis measurement of the VO2 dielectric function for its metal-insulator transition by visible-IR ellipsometry. J. Appl. Phys. 2018, 124, 195102. [Google Scholar] [CrossRef]
- Deringer, V.L.; Zhang, W.; Rausch, P.; Mazzarello, R.; Dronskowski, R.; Wuttig, M. A chemical link between Ge-Sb-Te and In-Sb-Te phase-change materials. J. Mater. Chem. C 2015, 3, 9519–9523. [Google Scholar] [CrossRef]
- Pandey, S.K.; Manivannan, A. Direct evidence for structural transformation and higher thermal stability of amorphous insbte phase change material. Scr. Mater. 2021, 192, 73–77. [Google Scholar] [CrossRef]
- Raoux, S. Phase Change Materials. Annu. Rev. Mater. Res. 2009, 39, 25–48. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Naturematerials 2007, 6, 824–832. [Google Scholar] [CrossRef]
- Chen, W.; Chenghao, W.; Qi, W.; Dinger, C.; Dawei, Z. Research progress on preparation of vanadium dioxide thin films and applications of modulators and switches. Opt. Instrum. 2021, 43, 78–85. [Google Scholar]
- Gong, C.; Zheng, G. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures. Micromachines 2022, 13, 920. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Ling, C.; Yun, M.; Sun, X.; Shao, J.; Fan, Z. Rigorous coupled-wave analysis for the optical character of multi-layer dielectric thin film. In Proceedings of the Sixth International Conference on Thin Film Physics and Applications, Shanghai, China, 25–28 September 2007; Volume 6984, p. 69843U. [Google Scholar]
- Benkahoul, M.; Chaker, M.; Margot, J.; Haddad, E.; Kruzelecky, R.; Wong, B.; Jamroz, W.; Poinas, P. Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications. Sol. Energy Mater. Sol. Cells 2011, 95, 3504–3508. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Lakhtakia, A. Brewster Condition for Planar Interfaces of Natural Optically Active Media. Z. Naturforsch. 1992, 47a, 921–922. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, T.; Mei, Z.-L.; Li, X.-L.; Sui, W.-B.; Tang, L.-Y.; Li, F.-S. Analyzing Bandwidth on the Microwave Absorber by the Interface Reflection Model. Chin. Phys. Lett. 2016, 33, 027502. [Google Scholar] [CrossRef]
- Jin, C.; Yang, Y. Transmissive nonlocal multilayer thin film optical filter for image differentiation. Nanophotonics 2021, 10, 3519–3525. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, L.; Du, K.; Zhang, B.; Zhou, C.; Chen, G.; Bai, J.; Xu, M.; Wang, S. Continuously controlling the phase transition of In3SbTe2 for tunable high quality-factors absorber. Opt. Laser Technol. 2023, 162, 109239. [Google Scholar] [CrossRef]
- Lyu, X. Design and Fabrication of Smart Infrared Absorbers Based on Vanadium Dioxide. Ph.D. Thesis, University of Chinese Academy of Sciences, Shanghai, China, 2020. [Google Scholar]
- Manman, T.; Guoxiang, W.; Xiang, S.; Yimin, C.; Tiefeng, X.; Shixun, D.; Qiuhun, N. Phase change properties of ZnSb-doped Ge2Sb2Te5 films. Acta Phys. Sin. 2015, 64, 293–300. [Google Scholar]
- Park, T.J.; Park, S.J.; Kim, D.H.; Kim, I.S.; Kim, S.K.; Choi, S.Y. Phase transition characteristics of Ge-Sb-Te pseudobinary alloys in laser irradiation measurement. Curr. Appl. Phys. 2008, 8, 716–719. [Google Scholar] [CrossRef]
- Qiao, C.; Guo, Y.R.; Wang, J.J.; Shen, H.; Wang, S.Y.; Zheng, Y.X.; Zhang, R.J.; Chen, L.Y.; Wang, C.Z.; Ho, K.M. The local structural differences in amorphous Ge-Sb-Te alloys. J. Alloys Compd. 2019, 774, 748–757. [Google Scholar] [CrossRef]
- Ying, Z.; ShenJin, W.; Xinyu, Y.; Shuai, C.; Kun, C.; Huanfeng, Z.; Jing, L.; Lei, L. Improvement of phase change behavior in titanium-doped Ge2Sb2Te5 films. J. Infrared Millim. Waves 2015, 6, 658–662. [Google Scholar]
- Paone, A.; Sanjines, R.; Jeanneret, P.; Schüler, A. Temperature-dependent multiangle FTIR NIR-MIR ellipsometry of thermochromic VO2 and V1−xWxO2 films. Sol. Energy 2015, 118, 107–116. [Google Scholar] [CrossRef]
- Tazawa, M.; Jin, P.; Tanemura, S. Optical constants of V1−xWxO2 films. Appl. Opt. 1998, 37, 1858–1861. [Google Scholar] [CrossRef] [PubMed]
Structure | Waveband (μm) | Optimized Thicknesses (μm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
h1 | h2 | h3 | h4 | h5 | h6 | |||||
VO2–GST multiple-stack film | 3–5 | 0.163 | 0.448 | - | - | - | - | 0.63 | 0.84 | 0.63 |
0.165 | 0.174 | 0.049 | 0.214 | - | - | 0.67 | 0.84 | 0.62 | ||
0.172 | 0.142 | 0.193 | 0.213 | 0.390 | 0.311 | 0.67 | 0.86 | 0.60 | ||
8–14 | 0.563 | 1.138 | - | - | - | - | 0.59 | 0.79 | 0.61 | |
0.558 | 0.140 | 0.515 | 0.956 | - | - | 0.65 | 0.86 | 0.54 | ||
0.566 | 0.144 | 0.522 | 1.864 | 0.673 | 1.019 | 0.72 | 0.86 | 0.55 | ||
VO2–IST multiple-stack film | 3–5 | 0.157 | 0.480 | - | - | - | - | 0.71 | 0.88 | 0.86 |
0.158 | 0.111 | 0.127 | 0.273 | - | - | 0.74 | 0.90 | 0.86 | ||
0.165 | 0.121 | 0.201 | 0.677 | 0.853 | 0.366 | 0.76 | 0.91 | 0.86 | ||
8–14 | 0.574 | 1.213 | - | - | - | - | 0.67 | 0.80 | 0.90 | |
0.580 | 0.106 | 0.511 | 0.761 | - | - | 0.72 | 0.90 | 0.90 | ||
0.580 | 0.106 | 0.056 | 0 | 0.454 | 0.762 | 0.72 | 0.90 | 0.90 |
Growth Technique | Waveband (μm) | Material | Multiple-Stack Film Parameters (μm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
h1 | h2 | h3 | h4 | h5 | h6 | ||||||
Sol-gel [3] | 3–5 | GST | 0.165 | 0.174 | 0.049 | 0.214 | - | - | 0.67 | 0.84 | 0.62 |
IST | 0.165 | 0.121 | 0.201 | 0.677 | 0.853 | 0.366 | 0.76 | 0.90 | 0.86 | ||
8–14 | GST | 0.566 | 0.144 | 0.522 | 1.864 | 0.673 | 1.019 | 0.72 | 0.86 | 0.55 | |
IST | 0.580 | 0.106 | 0.511 | 0.761 | - | - | 0.72 | 0.90 | 0.90 | ||
Magnetron Sputtering [54] | 3–5 | GST | 0.186 | 0.114 | 0.230 | 0.102 | 0.394 | 0.262 | 0.54 | 0.85 | 0.62 |
IST | 0.171 | 0.079 | 0.126 | 0.143 | 0.056 | 0 | 0.67 | 0.90 | 0.86 | ||
8–14 | GST | 0.555 | 0.203 | 0.237 | 0.103 | 0.202 | - | 0.54 | 0.79 | 0.59 | |
IST | 0.574 | 0.132 | 0.332 | 0.142 | 0.292 | 0 | 0.59 | 0.86 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Xie, B.; Zhang, W.; Zheng, C.; Liu, L. Self-Adaptive Multistage Infrared Radiative Thermo-Optic Modulators Based on Phase-Change Materials. Photonics 2023, 10, 966. https://doi.org/10.3390/photonics10090966
Zhu H, Xie B, Zhang W, Zheng C, Liu L. Self-Adaptive Multistage Infrared Radiative Thermo-Optic Modulators Based on Phase-Change Materials. Photonics. 2023; 10(9):966. https://doi.org/10.3390/photonics10090966
Chicago/Turabian StyleZhu, Hua, Bowei Xie, Wenjie Zhang, Chong Zheng, and Linhua Liu. 2023. "Self-Adaptive Multistage Infrared Radiative Thermo-Optic Modulators Based on Phase-Change Materials" Photonics 10, no. 9: 966. https://doi.org/10.3390/photonics10090966
APA StyleZhu, H., Xie, B., Zhang, W., Zheng, C., & Liu, L. (2023). Self-Adaptive Multistage Infrared Radiative Thermo-Optic Modulators Based on Phase-Change Materials. Photonics, 10(9), 966. https://doi.org/10.3390/photonics10090966