Photonic-Assisted Microwave Frequency Measurement Using High Q-Factor Microdisk with High Accuracy
Abstract
1. Introduction
2. Principle
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Domdouzis, K.; Kumar, B.; Anumba, C. Radio-Frequency Identification (RFID) applications: A brief introduction. Adv. Eng. Inform. 2007, 21, 350–355. [Google Scholar] [CrossRef]
- Bolton, S.J.; Levin, S.M.; Guillot, T.; Li, C.; Kaspi, Y.; Orton, G.; Wong, M.H.; Oyafuso, F.; Allison, M.; Arballo, J.; et al. Microwave observations reveal the deep extent and structure of Jupiter’s atmospheric vortices. Science 2021, 374, 968–972. [Google Scholar] [CrossRef]
- Ali, L.; Wang, C.; Meng, F.Y.; Wei, Y.C.; Tan, X.; Adhikari, K.K.; Zhao, M. Simultaneous measurement of thickness and permittivity using microwave resonator-based planar sensor. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22794. [Google Scholar] [CrossRef]
- Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser Photonics Rev. 2013, 7, 506–538. [Google Scholar] [CrossRef]
- Zou, X.; Lu, B.; Pan, W.; Yan, L.; Stöhr, A.; Yao, J. Photonics for microwave measurements. Laser Photonics Rev. 2016, 10, 711–734. [Google Scholar] [CrossRef]
- Pan, S.; Yao, J. Photonics-Based Broadband Microwave Measurement. J. Light. Technol. 2017, 35, 3498–3513. [Google Scholar] [CrossRef]
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Pelusi, M.; Luan, F.; Vo, T.D.; Lamont, M.R.E.; Madden, S.J.; Bulla, D.A.; Choi, D.-Y.; Luther-Davies, B.; Eggleton, B.J. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nat. Photonics 2009, 3, 139–143. [Google Scholar] [CrossRef]
- Zhu, Y.-L.; Wu, B.-L.; Li, J.; Wang, M.-G.; Xiao, S.-Y.; Yan, F.-P. Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator. Chin. Phys. B 2022, 31, 044202. [Google Scholar] [CrossRef]
- Lin, T.; Zou, C.; Zhang, Z.; Zhao, S.; Liu, J.; Li, J.; Zhang, K.; Yu, W.; Wang, J.; Jiang, W. Differentiator-Based Photonic Instantaneous Frequency Measurement for Radar Warning Receiver. J. Light. Technol. 2020, 38, 3942–3949. [Google Scholar] [CrossRef]
- Emami, H.; Sarkhosh, N.; Ashourian, M. Reconfigurable photonic radar warning receiver based on cascaded grating. Opt. Express 2013, 21, 7734–7739. [Google Scholar] [CrossRef]
- Emami, H.; Sarkhosh, N.; Ashourian, M. Photonic simultaneous frequency identification of radio-frequency signals with multiple tones. Appl. Opt. 2013, 52, 5508–5515. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Chan, E.H.W.; Minasian, R.A. Photonic Multiple Frequency Measurement Using a Frequency Shifting Recirculating Delay Line Structure. J. Light. Technol. 2014, 32, 3831–3838. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Chan, E.H.; Minasian, R.A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique. Opt. Lett. 2014, 39, 2419–2422. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, F.; Ben, D.; Pan, S. Simultaneous Radar Detection and Frequency Measurement by Broadband Microwave Photonic Processing. J. Light. Technol. 2020, 38, 2171–2179. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, F.; Shi, J.; Pan, S. Deep neural network-assisted high-accuracy microwave instantaneous frequency measurement with a photonic scanning receiver. Opt. Lett. 2020, 45, 3038–3041. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, F.; Zhou, Y.; Pan, S.; Wang, Y.; Ben, D. Photonic scanning receiver for wide-range microwave frequency measurement by photonic frequency octupling and in-phase and quadrature mixing. Opt. Lett. 2020, 45, 5381–5384. [Google Scholar] [CrossRef]
- Burla, M.; Wang, X.; Li, M.; Chrostowski, L.; Azana, J. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nat. Commun. 2016, 7, 13004. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhao, Y.; Wei, Y.; Zhou, F.; Chen, D.; Zhang, Y.; Xiao, X.; Li, M.; Dong, J.; Yu, S.; et al. Highly Integrated Dual-Modality Microwave Frequency Identification System. Laser Photonics Rev. 2022, 16, 2200006. [Google Scholar] [CrossRef]
- Marpaung, D. On-Chip Photonic-Assisted Instantaneous Microwave Frequency Measurement System. IEEE Photonics Technol. Lett. 2013, 25, 837–840. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, W.; Pan, S.; Yao, J. High-Sensitivity Instantaneous Microwave Frequency Measurement Based on a Silicon Photonic Integrated Fano Resonator. J. Light. Technol. 2019, 37, 2527–2533. [Google Scholar] [CrossRef]
- Fandino, J.S.; Munoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter. Opt. Lett. 2013, 38, 4316–4319. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, F.; Yan, S.; Min, S.; He, M.; Gao, D.; Dong, J. Photonic measurement of microwave frequency using a silicon microdisk resonator. Opt. Commun. 2015, 335, 266–270. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Liu, J.; Yao, J. On-chip two-step microwave frequency measurement with high accuracy and ultra-wide bandwidth using add-drop micro-disk resonators. Opt. Lett. 2019, 44, 2402–2405. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, F.; Gao, D.S.; Wei, Y.X.; Xiao, X.; Yu, S.H.; Dong, J.J.; Zhang, X.L. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter. Photonics Res. 2019, 7, 172–181. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, H.; Wang, X.; Zhou, L.; Dong, J.; Zhang, X. Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping. IEEE Photonics J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Y. High-performance transient SBS-based microwave measurement using high-chirp-rate modulation and advanced algorithms. Opt. Lett. 2023, 48, 3291–3294. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Y. Real-Time and High-Accuracy Microwave Frequency Identification Based on Ultra-Wideband Optical Chirp Chain Transient SBS Effect. Laser Photonics Rev. 2023, 17, 2200239. [Google Scholar] [CrossRef]
- Liu, J.; Shi, T.; Chen, Y. High-Accuracy Multiple Microwave Frequency Measurement with Two-Step Accuracy Improvement Based on Stimulated Brillouin Scattering and Frequency-to-Time Mapping. J. Light. Technol. 2021, 39, 2023–2032. [Google Scholar] [CrossRef]
- Jiang, H.; Marpaung, D.; Pagani, M.; Vu, K.; Choi, D.-Y.; Madden, S.J.; Yan, L.; Eggleton, B.J. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica 2016, 3, 30–34. [Google Scholar] [CrossRef]
- Long, X.; Zou, W.; Chen, J. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering. Opt. Express 2017, 25, 2206–2214. [Google Scholar] [CrossRef]
- Hao, T.; Tang, J.; Shi, N.; Li, W.; Zhu, N.; Li, M. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold. Opt. Lett. 2019, 44, 3062–3065. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L. Microwave Photonic Technique for Frequency Measurement of Simultaneous Signals. IEEE Photonics Technol. Lett. 2009, 21, 642–644. [Google Scholar] [CrossRef]
- Cao, R.; He, Y.; Zheng, R.; He, Z.; Zhi, Y.; Wang, X.; Zhang, J.; Yao, J. Microwave frequency measurement using a silicon integrated microring resonator. Appl. Opt. 2022, 61, 6671–6676. [Google Scholar] [CrossRef] [PubMed]






| Structure | Range (GHz) | Error (MHz) | Reference |
|---|---|---|---|
| Silicon MRR | 14–25 | 200 | [34] |
| InP MZI | 5–15 | 200 (rms) * | [22] |
| TriPleX MRR | 0.5–4 | 93.6 (rms) | [20] |
| Silicon Microdisk | 1.6–40 | 60 | [24] |
| Silicon MRR | 3–19 | 500 | [21] |
| Silicon MRR | 1–30 | 237.3 (rms) | [25] |
| Silicon waveguide Bragg grating | 0–32 | 773 (rms) | [18] |
| Magnesium fluoride microdisk | 14.25–17.25 | 10 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Wang, W.; Shi, L.; Che, C.; Dong, J. Photonic-Assisted Microwave Frequency Measurement Using High Q-Factor Microdisk with High Accuracy. Photonics 2023, 10, 847. https://doi.org/10.3390/photonics10070847
Zhao M, Wang W, Shi L, Che C, Dong J. Photonic-Assisted Microwave Frequency Measurement Using High Q-Factor Microdisk with High Accuracy. Photonics. 2023; 10(7):847. https://doi.org/10.3390/photonics10070847
Chicago/Turabian StyleZhao, Mengyao, Wenyu Wang, Lei Shi, Chicheng Che, and Jianji Dong. 2023. "Photonic-Assisted Microwave Frequency Measurement Using High Q-Factor Microdisk with High Accuracy" Photonics 10, no. 7: 847. https://doi.org/10.3390/photonics10070847
APA StyleZhao, M., Wang, W., Shi, L., Che, C., & Dong, J. (2023). Photonic-Assisted Microwave Frequency Measurement Using High Q-Factor Microdisk with High Accuracy. Photonics, 10(7), 847. https://doi.org/10.3390/photonics10070847

