Imaging Analysis of Photonic Integrated Interference Imaging System Based on Compact Sampling Lenslet Array Considering On-Chip Optical Loss
Abstract
:1. Introduction
2. Imaging Principles
2.1. Propagation of Light Field from Source to Lenslet Array
2.2. Detection of Mutual Coherent Intensity
2.3. Image Reconstruction
3. Compact Sampling Lenslet Array
3.1. Design Process of Compact Sampling Lenslet Array
3.1.1. Basic Structure of Compact Sampling Lenslet Array
3.1.2. The Number and Paring Method of Lenslets
3.2. Imaging Verification of Compact Sampling Lenslet Array
4. Design and Layout of PIC
4.1. Design of Key Components
4.1.1. Core Waveguide
4.1.2. Conversion, Crossing, and Coupling between Waveguides
- 1.
- Silicon nitride–silicon waveguide converter
- 2.
- Waveguide crossing
- 3.
- Interlayer coupler
4.1.3. MMI
4.1.4. Phase Shifter
4.1.5. AWG
4.2. Layout Design
4.2.1. Layout Design of Silicon PIC
4.2.2. Layout Design of Silicon Nitride PIC
4.2.3. PIC Fabrication
4.3. Simulate the Influence of On-Chip Optical Loss and Phase Noise on Imaging
4.3.1. Influence of On-Chip Optical Loss on Imaging
4.3.2. Influence of Phase Noise on Imaging
4.4. Calibration of Measurement Error of Visibility
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stahl, H.P.; Thronson, H.; Langhoff, S.; Postman, M.; Lester, D.; Lillie, C.F.; Brissenden, R.J. Potential astrophysics science missions enabled by NASA’s planned Ares V. In Proceedings of the UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts IV, San Diego, CA, USA, 18 September 2009; pp. 69–75. [Google Scholar]
- Kendrick, R.L.; Duncan, A.; Ogden, C.; Wilm, J.; Stubbs, D.M.; Thurman, S.T.; Su, T.; Scott, R.P.; Yoo, S. Flat-panel space-based space surveillance sensor. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, Maui, HI, USA, 10–13 September 2013. [Google Scholar]
- Kendrick, R.L.; Duncan, A.; Ogden, C.; Wilm, J.; Thurman, S.T. Segmented planar imaging detector for eo reconnaissance. In Proceedings of the Computational Optical Sensing and Imaging, Arlington, VI, USA, 23–27 June 2013; p. CM4C. 1. [Google Scholar]
- Scott, R.P.; Su, T.; Ogden, C.; Thurman, S.T.; Kendrick, R.L.; Duncan, A.; Yu, R.; Yoo, S. Demonstration of a photonic integrated circuit for multi-baseline interferometric imaging. In Proceedings of the 2014 IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; pp. 1–2. [Google Scholar]
- Su, T.; Liu, G.; Badham, K.E.; Thurman, S.T.; Kendrick, R.L.; Duncan, A.; Wuchenich, D.; Ogden, C.; Chriqui, G.; Feng, S. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager. Opt. Express 2018, 26, 12801–12812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.; Scott, R.P.; Ogden, C.; Thurman, S.T.; Kendrick, R.L.; Duncan, A.; Yu, R.; Yoo, S. Experimental demonstration of interferometric imaging using photonic integrated circuits. Opt. Express 2017, 25, 12653–12665. [Google Scholar] [CrossRef] [PubMed]
- Thurman, S.T.; Kendrick, R.L.; Duncan, A.; Wuchenich, D.; Ogden, C. System design for a SPIDER imager. In Proceedings of the Frontiers in Optics, San Jose, CA, USA, 18–22 October 2015; p. FM3E. 3. [Google Scholar]
- Chu, Q.; Shen, Y.; Yuan, M.; Gong, M. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance. Opt. Commun. 2017, 405, 288–296. [Google Scholar] [CrossRef]
- Yu, G.; Jin, L.; Zhou, F.; Tong, X. Analysis of influence of the spectral channels of AWG on the imaging quality of planar interferometric imaging system. In Proceedings of the Image and Graphics Technologies and Applications: 14th Conference on Image and Graphics Technologies and Applications, IGTA 2019, Beijing, China, 19–20 April 2019; Revised Selected Papers 14, 2019. pp. 516–523. [Google Scholar]
- Guo-mian, L.; Qi, L.; Yue-ting, C.; Hua-jun, F.; Zhi-hai, X.; Jingjing, M. An improved scheme and numerical simulation of segmented planar imaging detector for electro-optical reconnaissance. Opt. Rev. 2019, 26, 664–675. [Google Scholar] [CrossRef]
- Gao, W.P.; Wang, X.R.; Ma, L.; Yuan, Y.; Guo, D.F. Quantitative analysis of segmented planar imaging quality based on hierarchical multistage sampling lens array. Opt. Express 2019, 27, 7955–7967. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liu, C.; Zhang, Y.; Feng, Q.; Liu, S. Optimal design of segmented planar imaging for dense azimuthal sampling lens array. Opt. Express 2021, 29, 24300–24314. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Ye, Z.; Jiang, C.; Zhu, J.; Qiao, Z.; Jiang, Y. Lenslets combination optimal design of the segmented planar image detector for electro-optical reconnaissance. Opt. Eng. 2020, 59, 043105. [Google Scholar] [CrossRef]
- Ridgway, S.; Mariotti, J.-M. Deriving object visibilities from interferograms obtained with a fiber stellar interferometer. Astron. Astrophys. Suppl. Ser. 1997, 121, 379–392. [Google Scholar]
- Guyon, O. Wide field interferometric imaging with single-mode fibers. Astron. Astrophys. 2002, 387, 366–378. [Google Scholar] [CrossRef]
- Seimetz, M.; Weinert, C.-M. Options, feasibility, and availability of 2× 4 90 hybrids for coherent optical systems. J. Light. Technol. 2006, 24, 1317. [Google Scholar] [CrossRef]
- Wu, D.; Yu, Q.; Yue, Y.; Chen, F. Study of segmented planar imaging detector for electro-optical reconnaissance. Infrared 2018, 39, 1–6. [Google Scholar]
- Debary, H.; Mugnier, L.M.; Michau, V. Aperture configuration optimization for extended scene observation by an interferometric telescope. Opt. Lett. 2022, 47, 4056–4059. [Google Scholar] [CrossRef]
- Vlasov, Y.A.; McNab, S.J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 2004, 12, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.; Ryckeboer, E.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Dhakal, A.; Raza, A.; Hermans, A.; Muneeb, M.; Dhoore, S. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Light. Technol. 2017, 35, 639–649. [Google Scholar] [CrossRef]
- Luke, K.; Dutt, A.; Poitras, C.B.; Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 2013, 21, 22829–22833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, X.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Liow, T.-Y. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 405–416. [Google Scholar] [CrossRef]
- Chen, T. Rersearch on Key Techniques of Interferometric Imaging Based on Photonics Integrated Devices. Ph.D. Thesis, UCAS, Beijing, China, 2022. [Google Scholar]
Short Interference Arm | Medium Interference Arm | Long Interference Arm | |||
---|---|---|---|---|---|
1 | 2 | 3 | |||
2 | 26 | 38 | |||
8 | 32 | 44 | |||
10 | 34 | 46 | |||
16 | 40 | 52 | |||
18 | 42 | 54 | |||
24 | 48 | 60 | |||
26 | 50 | 62 |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Waveband | / | 1500–1600 | nm |
Object distance | 500 | km | |
Lenslet diameter | 3 | mm | |
Focal length | 17.5 | mm | |
Channel number of AWG | 16 | / |
Crossing Waveguide (dB) | Interlayer Coupler (dB) | MMI (dB) | Phase Shifter (dB) | AWG (dB) | Transmission-Si (dB) | Baseline Loss (dB) | |||
---|---|---|---|---|---|---|---|---|---|
1500.0 | 0.76 | 0.46 | 6.17 | 2.88 | 6.79 | 1.45 | 18.6 | ||
1504.8 | 0.78 | 0.37 | 5.86 | 2.74 | 18.1 | ||||
1509.6 | 0.79 | 0.30 | 5.54 | 2.60 | 17.6 | ||||
1514.4 | 0.81 | 0.23 | 5.20 | 2.50 | 17.1 | ||||
1519.4 | 0.83 | 0.17 | 4.84 | 2.43 | 16.6 | ||||
1524.3 | 0.86 | 0.12 | 4.48 | 2.40 | 16.2 | ||||
1529.3 | 0.88 | 0.08 | 4.14 | 2.40 | 15.8 | ||||
1534.2 | 0.91 | 0.05 | 3.83 | 2.44 | 15.5 | ||||
1539.2 | 0.94 | 0.02 | 3.58 | 2.50 | 15.4 | ||||
1544.3 | 0.98 | 0.01 | 3.41 | 2.62 | 15.3 | ||||
1549.4 | 1.01 | 0.00 | 3.34 | 2.74 | 15.4 | ||||
1554.5 | 1.05 | 0.01 | 3.38 | 2.88 | 15.6 | ||||
1559.6 | 1.09 | 0.03 | 3.54 | 3.03 | 16.0 | ||||
1564.8 | 1.13 | 0.06 | 3.83 | 3.18 | 16.5 | ||||
1570.1 | 1.17 | 0.11 | 4.24 | 3.39 | 17.2 | ||||
1575.3 | 1.22 | 0.17 | 4.75 | 3.72 | 18.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Tao, W.; Diao, Y.; Sang, B.; Sha, W. Imaging Analysis of Photonic Integrated Interference Imaging System Based on Compact Sampling Lenslet Array Considering On-Chip Optical Loss. Photonics 2023, 10, 797. https://doi.org/10.3390/photonics10070797
Deng X, Tao W, Diao Y, Sang B, Sha W. Imaging Analysis of Photonic Integrated Interference Imaging System Based on Compact Sampling Lenslet Array Considering On-Chip Optical Loss. Photonics. 2023; 10(7):797. https://doi.org/10.3390/photonics10070797
Chicago/Turabian StyleDeng, Xiaoqin, Wei Tao, Yuqing Diao, Benliang Sang, and Wei Sha. 2023. "Imaging Analysis of Photonic Integrated Interference Imaging System Based on Compact Sampling Lenslet Array Considering On-Chip Optical Loss" Photonics 10, no. 7: 797. https://doi.org/10.3390/photonics10070797
APA StyleDeng, X., Tao, W., Diao, Y., Sang, B., & Sha, W. (2023). Imaging Analysis of Photonic Integrated Interference Imaging System Based on Compact Sampling Lenslet Array Considering On-Chip Optical Loss. Photonics, 10(7), 797. https://doi.org/10.3390/photonics10070797