High Light Efficiency Spectral Polarization Imaging Method Based on Mach–Zehnder Structured Liquid Crystal Tunable Filters and Variable Retarders
Abstract
:1. Introduction
2. System Configuration and Methodology
2.1. System Configuration
2.2. Proposed Method
3. System Calibration
3.1. Spectral Calibration
3.2. Polarimetric Calibration
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorbunov, G.G.; Drichko, N.M.; Starichenkova, V.D.; Taganov, O.K. Polarization hyperspectrometers: A review. J. Opt. Technol. 2018, 85, 291–295. [Google Scholar] [CrossRef]
- Bieszczad, G.; Gogler, S.; Swiderski, J. Review of design and signal processing of polarimetric imaging cameras. Opto-Electron. Rev. 2021, 29, 5–12. [Google Scholar]
- Si, Y.; Lu, Q.; Zhang, X.; Hu, X.; Fu, W.; Li, L.; Gu, S. A review of advances in the retrieval of aerosol properties by remote sensing multi-angle technology. Atmos. Environ. 2021, 244, 117928. [Google Scholar] [CrossRef]
- Dremin, V.; Marcinkevics, Z.; Zherebtsov, E.; Popov, A.; Grabovskis, A.; Kronberga, H.; Geldnere, K.; Doronin, A.; Meglinski, L. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Trans. Med. Imaging 2021, 40, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Domingo, M.Á.; Calero Castillo, A.I.; Vivar García, E.; Valero, E.M. Evaluation of cleaning processes using colorimetric and spectral data for the removal of layers of limewash from medieval plasterwork. Sensors 2020, 20, 7147. [Google Scholar] [CrossRef] [PubMed]
- Kudenov, M.W.; Lowenstern, M.E.; Craven, J.M.; LaCasse, C.F. Field deployable pushbroom hyperspectral imaging polarimeter. Opt. Eng. 2017, 56, 103107. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Li, L.; Wang, A.; Wei, X.; Mao, H. Nondestructive diagnostics of soluble sugar, total nitrogen and their ratio of tomato leaves in greenhouse by polarized spectra–hyperspectral data fusion. Int. J. Agric. Biol. Eng. 2020, 13, 189–197. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, B.; Wang, G.; Ying, J.; Liu, J.; Chen, Q. Spectral Camouflage Characteristics and Recognition Ability of Targets Based on Visible/Near-Infrared Hyperspectral Images. Photonics 2022, 9, 957. [Google Scholar] [CrossRef]
- Li, N.; Zhao, Y.; Pan, Q.; Kong, S.G.; Chan, J.C.W. Illumination-invariant road detection and tracking using LWIR polarization characteristics. ISPRS J. Photogramm. Remote Sens. 2021, 180, 357–369. [Google Scholar] [CrossRef]
- Rodríguez, C.; Van Eeckhout, A.; Garcia-Caurel, E.; Lizana, A.; Campos, J. Automatic pseudo-coloring approaches to improve visual perception and contrast in polarimetric images of biological tissues. Sci. Rep. 2022, 12, 18479. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.; Zhu, J.; Zhang, N.; Zong, K.; Zhai, L.; Zhang, Y.; Cai, Y.; Wang, H. Exact optical path difference and complete performance analysis of a spectral zooming imaging spectrometer. Opt. Express 2022, 30, 39479–39491. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Bai, C.; Liu, J.; He, J.; Li, J. Fourier transform imaging spectropolarimeter using ferroelectric liquid crystals and Wollaston interferometer. Opt. Express 2017, 25, 19904–19922. [Google Scholar] [CrossRef] [PubMed]
- Bo, J.; Gu, Y.; Xing, W.; Ju, X.; Yan, C.; Wang, X. Spatially modulated snapshot computed tomographic polarization imaging spectrometer. Appl. Opt. 2021, 60, 5860–5866. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Mehdi, S.R.; Wu, C.; Li, Z.; Gong, H.; Ali, A.; Huang, H. Underwater spectral imaging system based on liquid crystal tunable filter. J. Mar. Sci. Eng. 2021, 9, 1206. [Google Scholar] [CrossRef]
- Li, Q.; Lu, F.; Wang, X.; Zhu, C. Low crosstalk polarization-difference channeled imaging spectropolarimeter using double-Wollaston prism. Opt. Express 2019, 27, 11734–11747. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, J.; Zhang, Y.; Zong, K. Snapshot broadband polarization imaging based on Mach-Zehnder-grating interferometer. Opt. Express 2020, 28, 33718–33730. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Li, J.; Zhang, W.; Xu, Y.; Feng, Y. Static full-Stokes Fourier transform imaging spectropolarimeter capturing spectral, polarization, and spatial characteristics. Opt. Express 2021, 29, 38623–38645. [Google Scholar] [CrossRef]
- Martínez-Domingo, M.Á.; Nieves, J.L.; Valero, E.M. Eight-channel multispectral image database for saliency prediction. Sensors 2021, 21, 970. [Google Scholar] [CrossRef]
- Murakami, Y.; Yamaguchi, M.; Ohyama, N. Hybrid-resolution multispectral imaging using color filter array. Opt. Express 2012, 20, 7173–7183. [Google Scholar] [CrossRef]
- Zhang, R.; Wen, T.; Wang, Y.; Wang, Z.; Li, K. Spectropolarimetric detection using photoelastic modulators and acousto-optic tunable filter. Appl. Opt. 2015, 54, 8686–8693. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, T.; Wu, X.; Cui, G.; Yang, M.; Bai, Z.; Wang, L.; Li, H.; Chen, W.; Leng, Q.; et al. Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter. Crystals 2021, 11, 272. [Google Scholar] [CrossRef]
- Shinatake, K.; Ishinabe, T.; Shibata, Y.; Fujikake, H. High-speed Tunable Multi-Bandpass Filter for Real-time Spectral Imaging using Blue Phase Liquid Crystal Etalon. ITE Trans. Media Technol. Appl. 2020, 8, 202–209. [Google Scholar] [CrossRef]
- Abuleil, M.; Abdulhalim, I. Narrowband multispectral liquid crystal tunable filter. Opt. Lett. 2016, 41, 1957–1960. [Google Scholar] [CrossRef] [PubMed]
- Messaadi, A.; Vargas, A.; Sanchez-Lopez, M.M.; Garcia-Martinez, P.; Kula, P.; Bennis, N.; Moreno, L. Solc filters in a reflective geometry. J. Opt. 2017, 19, 045703. [Google Scholar] [CrossRef] [Green Version]
- Tam, A.M.W.; Qi, G.; Srivastava, A.K.; Wang, X.Q.; Wang, F.F.; Chigrinov, V.G.; Kwok, H.S. Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter. Appl. Opt. 2014, 53, 3787–3795. [Google Scholar] [CrossRef]
- Abdlaty, R.; Orepoulos, J.; Sinclair, P.; Berman, R.; Fang, Q. High throughput AOTF hyperspectral imager for randomly polarized light. Photonics 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Oiknine, Y.; August, I.; Stern, A. Along-track scanning using a liquid crystal compressive hyperspectral imager. Opt. Express 2016, 24, 8446–8457. [Google Scholar] [CrossRef]
- Fan, A.; Xu, T.; Ma, X.; Li, J.; Wang, X.; Zhang, Y.; Xu, C. Four-dimensional compressed spectropolarimetric imaging. Signal Process. 2022, 195, 108437. [Google Scholar] [CrossRef]
- August, I.; Oiknine, Y.; AbuLeil, M.; Abdulhalim, I.; Stern, A. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder. Sci. Rep. 2016, 6, 23524. [Google Scholar] [CrossRef]
- AbuLeil, M.J.; Pasha, D.; August, I.; Pozhidaev, E.P.; Barbashov, V.A.; Tkachenko, T.P.; Kuznetsov, A.V.; Abdulhalim, I. Helical nanostructures of ferroelectric liquid crystals as fast phase retarders for spectral information extraction devices: A comparison with the nematic liquid crystal phase retarders. Materials 2021, 14, 5540. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ma, X.; Xu, T.; Arce, G.R. Compressive spectral imaging system based on liquid crystal tunable filter. Opt. Express 2018, 26, 25226–25243. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.; Xu, T.; Li, J.; Teng, G.; Wang, X.; Zhang, Y.; Xu, C. Compressive full-Stokes polarization and flexible hyperspectral imaging with efficient reconstruction. Opt. Lasers Eng. 2023, 160, 107256. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Hu, R.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Improved Feature Point Pair Purification Algorithm Based on SIFT During Endoscope Image Stitching. Front. Neurorobotics 2022, 16, 840594. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Fernández, E.; Bruce, N.C.; Rodríguez-Herrera, O.G.; Espinosa-Luna, R. Calibration and data extraction in a Stokes polarimeter employing three wavelengths simultaneously. Appl. Opt. 2021, 60, 5153. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Yang, W.; Si, L.; Zhang, M.; Zhang, Y.; Luo, K.; Zhan, J.; Zhang, S. Study of multispectral polarization imaging in sea fog environment. Front. Phys. 2023, 11, 1129517. [Google Scholar] [CrossRef]
- Karim, S.; Tong, G.; Li, J.; Qadir, A.; Farooq, U.; Yu, Y. Current advances and future perspectives of image fusion: A comprehensive review. Inf. Fusion 2023, 90, 185–217. [Google Scholar] [CrossRef]
MPI | 450 nm | 532 nm | 632 nm | Unfiltered |
---|---|---|---|---|
S | 22.07 | 27.43 | 33.89 | 52.39 |
P | 23.23 | 28.60 | 34.07 | 53.10 |
Coupling SP | 42.17 | 53.90 | 65.46 | 101.2 |
SNR (dB) | 450 nm | 532 nm | 632 nm |
---|---|---|---|
S | 20.87 | 21.25 | 22.10 |
P | 21.21 | 21.33 | 22.42 |
S+P | 23.44 | 23.80 | 24.75 |
STDs | 450 nm | 532 nm | 632 nm |
---|---|---|---|
DoLP | 0.017 | 0.015 | 0.015 |
DoCP | 0.019 | 0.018 | 0.016 |
EI | 450 nm | 532 nm | 632 nm |
---|---|---|---|
Intensity image | 43.65 | 45.45 | 46.32 |
Polarization image | 67.48 | 72.99 | 74.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhang, S.; Zheng, W.; Yao, L. High Light Efficiency Spectral Polarization Imaging Method Based on Mach–Zehnder Structured Liquid Crystal Tunable Filters and Variable Retarders. Photonics 2023, 10, 765. https://doi.org/10.3390/photonics10070765
Chen L, Zhang S, Zheng W, Yao L. High Light Efficiency Spectral Polarization Imaging Method Based on Mach–Zehnder Structured Liquid Crystal Tunable Filters and Variable Retarders. Photonics. 2023; 10(7):765. https://doi.org/10.3390/photonics10070765
Chicago/Turabian StyleChen, Lixin, Shiyuan Zhang, Wenbin Zheng, and Lishuang Yao. 2023. "High Light Efficiency Spectral Polarization Imaging Method Based on Mach–Zehnder Structured Liquid Crystal Tunable Filters and Variable Retarders" Photonics 10, no. 7: 765. https://doi.org/10.3390/photonics10070765
APA StyleChen, L., Zhang, S., Zheng, W., & Yao, L. (2023). High Light Efficiency Spectral Polarization Imaging Method Based on Mach–Zehnder Structured Liquid Crystal Tunable Filters and Variable Retarders. Photonics, 10(7), 765. https://doi.org/10.3390/photonics10070765