Motion Artifact Suppression Method for the Clinical Application of Otoscopic Spectral-Domain Optical Coherence Tomography
Abstract
:1. Introduction
2. Scheme and Operating Procedure for the SDOCT Otoscopic System
3. Real-Time Visualization Routine for the Region-of-Interest Search
3.1. Using the Built-In Video Camera
3.2. Real-Time Methods for SDOCT Image Synthesis
3.3. Method for the Suppression of “Mirror” Artifacts
3.4. Comparative Evaluation of the Suppression of “Mirror” Artifacts
4. The Result of 3D Visualization of the Eardrum
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fercher, A.F. Optical coherence tomography. J. Biomed. Opt. 1996, 1, 157–173. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.F. Spectral/Fourier Domain Optical Coherence Tomography in Optical Coherence Tomography: Technology and Applications; Wolfgang Drexler, W., James, G., Fujimoto, J.G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 165–193. [Google Scholar] [CrossRef]
- Shilyagin, P.A.; Novozhilov, A.A.; Abubakirov, T.E.; Dilenyan, A.L.; Shakhov, A.V.; Moiseev, A.A.; Terpelov, D.A.; Ksenofontov, S.Y.; Matkivsky, V.A.; Gelikonov, V.M.; et al. Optical coherence tomograph for non-invasive examination of the human middle ear. Quantum Electron. 2021, 51, 38. [Google Scholar] [CrossRef]
- Gelikonov, V.M.; Gelikonov, G.V.; Terpelov, D.A.; Shilyagin, P.A. Electronic interface systems for goals of spectral domain optical coherence tomography. Instrum. Exp. Tech. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Terpelov, D.A.; Ksenofontov, S.Y.; Gelikonov, G.V.; Gelikonov, V.M.; Shilyagin, P.A. A data-acquisition and control system for spectral-domain optical coherence tomography with a speed of 91 912 A-scans/s based on a USB 3.0 interface. Instrum. Exp. Tech. 2017, 60, 868–874. [Google Scholar] [CrossRef]
- Ksenofontov, S.Y.; Kupaev, A.V.; Vasilenkova, T.V.; Terpelov, D.A.; Shilyagin, P.A.; Moiseev, A.A.; Gelikonov, G.V. A High-Performance Data-Acquisition and Control Module Based on a USB 3.0 Interface for a NIR Broadband Spectrometer. Instrum. Exp. Tech. 2021, 64, 759–764. [Google Scholar] [CrossRef]
- Sherstnev, E.P.; Shilyagin, P.A.; Terpelov, D.A.; Gelikonov, V.M.; Gelikonov, G.V. An Improved Analytical Model of a Spectrometer for Optical Coherence Tomography. Photonics 2021, 8, 534. [Google Scholar] [CrossRef]
- Shilyagin, P.A.; Ksenofontov, S.Y.; Moiseev, A.A.; Terpelov, D.A.; Matkivsky, V.A.; Kasatkina, I.V.; Mamaev, Y.A.; Gelikonov, G.V.; Gelikonov, V.M. Equidistant Recording of the Spectral Components in Ultra-Wideband Spectral-Domain Optical Coherence Tomography. Radiophys. Quantum Electron. 2018, 60, 769–778. [Google Scholar] [CrossRef]
- Leitgeb, R.A.; Wojtkowski, M. Complex and Coherence Noise Free Fourier Domain Optical Coherence Tomography. In Optical Coherence Tomography: Technology and Applications; Drexler, W., Fujimoto, J.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 177–207. [Google Scholar]
- Gelikonov, V.M.; Gelikonov, G.V.; Kasatkina, I.V.; Terpelov, D.A.; Shilyagin, P.A. Coherent Noise Compensation in Spectral-Domain Optical Coherence Tomography. Opt. Spectrosc. 2009, 106, 895–900. [Google Scholar] [CrossRef]
- Yasuno, Y.; Makita, S.; Endo, T.; Aoki, G.; Itoh, M.; Yatagai, T. Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. Appl. Opt. 2006, 45, 1861–1865. [Google Scholar] [CrossRef]
- Ai, J.; Wang, L.V. Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography. Opt. Lett. 2005, 30, 2939–2941. [Google Scholar] [CrossRef] [Green Version]
- Leitgeb, R.A.; Hitzenberger, C.K.; Fercher, A.F.; Bajraszewski, T. Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt. Lett. 2003, 28, 2201–2203. [Google Scholar] [CrossRef] [PubMed]
- Nyquist, H. Certain Topics in Telegraph Transmission Theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Ksenofontov, S.Y.; Shilyagin, P.A.; Terpelov, D.A.; Novozhilov, A.A.; Gelikonov, V.M.; Gelikonov, G.V. Application of Phase Correction for Compensation of Motion Artifacts in Spectral-Domain Optical Coherence Tomography. Instrum. Exp. Tech. 2020, 63, 126–132. [Google Scholar] [CrossRef]
- Heideman, M.; Johnson, D.; Burrus, C. Gauss and the history of the fast fourier transform. IEEE ASSP Mag. 1984, 1, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Heideman, M.T.; Johnson, D.H.; Burrus, C.S. Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 1985, 34, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Ballot, B. Akustische Versuche auf der Niederländischen Eisenbahn, nebst gelegentlichen Bemerkungen zur Theorie des Hrn. Prof. Doppler. Ann. Phys. 1845, 142, 321–351. [Google Scholar] [CrossRef] [Green Version]
- Bargmann, V. Irreducible Unitary Representations of the Lorentz Group. Ann. Math. 1947, 48, 568–640. [Google Scholar] [CrossRef]
- Ksenofontov, S.Y. Application of the Method of Multiple Mutual Synchronization of Parallel Computational Threads in Spectral-Domain Optical Coherent Tomography Systems. Instrum. Exp. Tech. 2019, 62, 317–323. [Google Scholar] [CrossRef]
- Monroy, G.L.; Pande, P.; Shelton, R.L.; Nolan, R.M.; Spillman, D.R., Jr.; Porter, R.G.; Novak, M.A.; Boppart, S.A. Non-invasive optical assessment of viscosity of middle ear effusions in otitis media. J. Biophotonics 2017, 10, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Monroy, G.L.; Won, J.; Shi, J.; Hill, M.C.; Porter, R.G.; Novak, M.A.; Hong, W.; Khampang, P.; Kerschner, J.E.; Spillman, D.R.; et al. Automated classification of otitis media with OCT: Augmenting pediatric image datasets with gold-standard animal model data. Biomed. Opt. Express 2022, 13, 3601–3614. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Robinson, S.R.; Jung, W.; Novak, M.A.; Boppart, S.A.; Allen, J.B. Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements. Hear. Res. 2013, 301, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Lui, C.G.; Kim, W.; Dewey, J.B.; Macías-Escrivá, F.D.; Ratnayake, K.; Oghalai, J.S.; Applegate, B.E. In vivo functional imaging of the human middle ear with a hand-held optical coherence tomography device. Biomed. Opt. Express 2021, 12, 5196–5213. [Google Scholar] [CrossRef]
- Zaki, F.; Locke, A.; Fitzgerald, S.; Sudhir, K.; Monroy, G.; Choi, H.; Won, J.; Boppart, S.; Mahadevan-Jansen, A. Non-invasive detection and characterization of otitis media causing bacteria and bacterial biofilms through Raman spectroscopy and optical coherence tomography. In Proceedings of the Imaging, Therapeutics, and Advanced Technology in Head and Neck Surgery and Otolaryngology 2022, San Francisco, CA, USA, 22 January–28 February 2022; Volume PC11935. [Google Scholar] [CrossRef]
- Tan, H.E.I.; Maria, P.L.S.; Wijesinghe, P.; Kennedy, B.F.; Allardyce, B.J.; Eikelboom, R.H.; Atlas, M.D.; Dilley, R.J. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review. Otolaryngol. Head Neck Surg. 2018, 159, 424–438. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, D.; Morrison, L.; Morrison, C.; Morris, D.P.; Bance, M.; Adamson, R.B.A. Optical Coherence Tomography Doppler Vibrometry Measurement of Stapes Vibration in Patients With Stapes Fixation and Normal Controls. Otol. Neurotol. 2019, 40, e349–e355. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; Hong, W.; Khampang, P.; Spillman, D.R.; Marshall, S.; Yan, K.; Porter, R.G.; Novak, M.A.; Kerschner, J.E.; Boppart, S.A. Longitudinal optical coherence tomography to visualize the in vivo response of middle ear biofilms to antibiotic therapy. Sci. Rep. 2021, 11, 5176. [Google Scholar] [CrossRef] [PubMed]
- Golabbakhsh, M.; Wang, X.; MacDougall, D.; Farrell, J.; Landry, T.; Funnell, W.R.J.; Adamson, R. Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears. J. Assoc. Res. Otolaryngol. 2023, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; Porter, R.G.; Novak, M.A.; Youakim, J.; Sum, A.; Barkalifa, R.; Aksamitiene, E.; Zhang, A.; Nolan, R.; Shelton, R.; et al. In vivo dynamic characterization of the human tympanic membrane using pneumatic optical coherence tomography. J. Biophotonics 2021, 14, e202000215. [Google Scholar] [CrossRef] [PubMed]
- Dsouza, R.; Won, J.; Monroy, G.; Spillman, D.; Boppart, S. Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications. J. Biomed. Opt. 2018, 23, 096003. [Google Scholar] [CrossRef]
- Won, J.; Monroy, G.L.; Dsouza, R.I.; Spillman, D.R.; McJunkin, J.; Porter, R.G.; Shi, J.; Aksamitiene, E.; Sherwood, M.; Stiger, L.; et al. Handheld Briefcase Optical Coherence Tomography with Real-Time Machine Learning Classifier for Middle Ear Infections. Biosensors 2021, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Shilyagin, P.A.; Novozhilov, A.A.; Dilenyan, A.L.; Vasilenkova, T.V.; Moiseev, A.A.; Kasatkina, I.V.; Gelikonov, V.M.; Gelikonov, G.V. Recognition of individual scatterers against the noise background in the optical coherence tomography image. Quantum Electron. 2021, 51, 371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksenofontov, S.Y.; Shilyagin, P.A.; Gelikonov, V.M.; Gelikonov, G.V. Motion Artifact Suppression Method for the Clinical Application of Otoscopic Spectral-Domain Optical Coherence Tomography. Photonics 2023, 10, 736. https://doi.org/10.3390/photonics10070736
Ksenofontov SY, Shilyagin PA, Gelikonov VM, Gelikonov GV. Motion Artifact Suppression Method for the Clinical Application of Otoscopic Spectral-Domain Optical Coherence Tomography. Photonics. 2023; 10(7):736. https://doi.org/10.3390/photonics10070736
Chicago/Turabian StyleKsenofontov, Sergey Y., Pavel A. Shilyagin, Valentin M. Gelikonov, and Grigory V. Gelikonov. 2023. "Motion Artifact Suppression Method for the Clinical Application of Otoscopic Spectral-Domain Optical Coherence Tomography" Photonics 10, no. 7: 736. https://doi.org/10.3390/photonics10070736
APA StyleKsenofontov, S. Y., Shilyagin, P. A., Gelikonov, V. M., & Gelikonov, G. V. (2023). Motion Artifact Suppression Method for the Clinical Application of Otoscopic Spectral-Domain Optical Coherence Tomography. Photonics, 10(7), 736. https://doi.org/10.3390/photonics10070736