Peculiarities of the Resonant Response of a Subwavelength Double Grating with Optical PT-Symmetry
Abstract
:1. Introduction
2. Investigated System
3. Optical System Responses
3.1. Passive System with Absorption
3.2. Active System with Dispersion in the Optical PT-Symmetry Mode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. In The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science; Philosophical Magazine Series; Taylor & Francis: London, UK, 1902; Volume 4, pp. 396–402. [Google Scholar]
- Hessel, A.; Oliner, A.A. A new theory of Wood’s anomalies on optical gratings. Appl. Opt. 1965, 4, 1275–1297. [Google Scholar] [CrossRef]
- Rosenblatt, D.; Sharon, A.; Friesem, A.A. Resonant grating waveguide structures. IEEE J. Quantum Electron. 1997, 33, 2038–2059. [Google Scholar] [CrossRef]
- Tibuleac, S.; Magnusson, R. Reflection and transmission guided-mode resonance filters. J. Opt. Soc. Am. A 1997, 14, 1617–1626. [Google Scholar] [CrossRef]
- Marcuse, D. Theory of Dielectric Optical Waveguides; Elsevier Science: Amsterdam, The Netherlands, 1991; pp. 396–402. [Google Scholar]
- Wang, S.S.; Magnusson, R.; Bagby, J.S.; Moharam, M.G. Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 1990, 7, 1470–1474. [Google Scholar] [CrossRef]
- Magnusson, R.; Wang, S.S. New principle for optical filters. Appl. Phys. Lett. 1992, 61, 1022–1024. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [Google Scholar]
- Moharam, M.G.; Grann, E.B.; Pommet, D.A.; Gaylord, T.K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076. [Google Scholar] [CrossRef]
- Hermannsson, P.G.; Sorensen, K.T.; Vannahme, C.; Smith, C.L.C.; Klein, J.J.; Russew, M.-M.; Grutzner, G.; Kristensen, A. All-polvmer photonic crystal slab sensor. Opt. Express 2015, 23, 16529–16539. [Google Scholar] [CrossRef] [Green Version]
- Quaranta, G.; Basset, G.; Martin, O.J.F.; Gallinet, B. Recent Advances in Resonant Waveguide Gratings. Laser Photonics Rev. 2018, 12, 1800017. [Google Scholar]
- Halir, R.; Bock, P.J.; Cheben, P.; Ortega-Moñux, A.; Alonso-Ramos, C.; Schmid, J.H.; Lapointe, J.; Xu, D.-X.; Wangüemert-Pérez, J.G.; Molina-Fernández, Í.; et al. Waveguide sub-wavelength structures: A review of principles and applications. Laser Photonics Rev. 2015, 9, 25–49. [Google Scholar]
- Divya, J.; Selvendran, S.; Sivanantha, R.A.; Sivasubramanian, A. Surface plasmon based plasmonic sensors: A review on their past, present and future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Pathak, A.K.; Rahman, B.M.A.; Viphavakit, C. Nanowire Embedded Micro-Drilled Dual-Channel Approach to Develop Highly Sensitive Biosensor. IEEE Photonics Technol. Lett. 2022, 34, 707–710. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J.-h. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Z.; Junyu, L.; Qingquan, L.; Fei, Y.; Wang, S.; Wei, L. Artificial structural colors and applications. Innovation 2021, 2, 100081. [Google Scholar]
- Ge, F.; Xiao, H.; Jialiang, X. Strongly coupled systems for nonlinear optics. Laser Photonics Rev. 2021, 15, 2000514. [Google Scholar]
- Raghunathan, V.; Deka, J.; Menon, S.; Biswas, R.; A.S, L.K. Nonlinear Optics in Dielectric Guided-Mode Resonant Structures and Resonant Metasurfaces. Micromachines 2020, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Overvig, A.C.; Stephanie, C.M.; Nanfang, Y. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 2020, 125, 017402. [Google Scholar]
- Hu, Y.; Xiong, Y. High-Q and tunable analog of electromagnetically induced transparency in terahertz all-dielectric metamaterial. Appl. Opt. 2022, 61, 1500–1506. [Google Scholar] [CrossRef]
- Brunetti, G.; Marocco, G.; Benedetto, A.; Giorgio, A.; Armenise, M.N.; Ciminelli, C. Design of a large bandwitdth 2 × 2 interferometric switching cell based on sub-wavelength grating. J. Opt. 2021, 23, 085801. [Google Scholar]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Silicon photonic devices realized on refractive index engineered subwavelength grating waveguides-A review. Opt. Laser Technol. 2021, 138, 106863. [Google Scholar] [CrossRef]
- Letartre, X.; Mouette, J.; Leclercq, J.; Romeo, P.R.; Seassal, C.; Viktorovitch, P. Switching Devices With Spatial and Spectral Resolution Combining Photonic Crystal and MOEMS Structures. J. Light. Technol. 2003, 21, 1691–1699. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Deng, H. Dispersion Engineering for Vertical Microcavities Using Subwavelength Gratings. Phys. Rev. Lett. 2015, 114, 073601. [Google Scholar] [PubMed] [Green Version]
- Karagodsky, V.; Sedgwick, F.G.; Chang-Hasnain, C.J. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 2010, 18, 16973–16988. [Google Scholar]
- Lee, H.-S.; Yoon, Y.-T.; Lee, S.-S.; Kim, S.-H.; Lee, K.-D. Color filter based on a subwavelength patterned metal grating. Opt. Express 2007, 15, 15457–15463. [Google Scholar] [CrossRef]
- Yeh, P. A new optical model for wire grid polarizers. Opt. Commun. 1978, 26, 289–292. [Google Scholar] [CrossRef]
- Grann, E.B.; Moharam, M.G.; Pommet, D.A. Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings. J. Opt. Soc. Am. A 1994, 11, 2695–2703. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Lee, Y.-C.; Lai, Y.-H.; Lim, J.-C.; Huang, N.-T.; Lin, C.-T.; Huang, J.-J. Review of integrated optical biosensors for point-of-care applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; He, X.; Huang, J.; Zhang, J.; Chen, D.; Zhang, Z. High quality factor electromagnetically induced transparency-like effect in coupled guided-mode resonant systems. Opt. Express 2019, 27, 7712–7718. [Google Scholar]
- Efremova, E.A.; Krylov, I.R.; Prokhorova, U.V.; Shalymov, E.V.; Shoev, V.I.; Venediktov, V.Y.; Zinchik, A.A. Spectral characteristics of coupled gratings at PT-symmetry and its destruction. In Advanced Sensor Systems and Applications; SPIE: Bellingham, WA, USA, 2022; Volume 12321. [Google Scholar]
- El-Ganainy, R.; Makris, K.G.; Christodoulides, D.N.; Musslimani, Z.H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 2007, 32, 2632–2634. [Google Scholar] [CrossRef] [Green Version]
- Zyablovsky, A.A.; Vinogradov, A.P.; Pukhov, A.A.; Dorofeenko, A.V.; Lisyanskym, A.A. PT-symmetry in optics. Phys.-Uspekhi 2014, 57, 1063. [Google Scholar] [CrossRef] [Green Version]
- Ramy, E.; Makris, G.K.; Khajavikhan, M.; Ziad, M.; Rotter, S.; Christodoulides, D. Non-Hermitian physics and PT symmetry. Nat. Phys. 2018, 14, 11–19. [Google Scholar]
- Schinke, C.; Peest, P.C.; Schmidt, J.; Brendel, R.; Bothe, K.; Vogt, M.R. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. Aip Adv. 2015, 5, 067168. [Google Scholar]
- Taylor, M.J.; Gardner, L.C.; Murray, I.S. Jet-Like Structures and Wake in Mg I (518 nm) Images of 1999 Leonid Storm Meteors. Earth Moon Planets 1998, 182, 379–389. [Google Scholar] [CrossRef]
- Abe, S. Meteoroids and Meteors—Observations and Connection to Parent Bodies. In Small Bodies in Planetary Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 129–166. [Google Scholar]
- Lin, H.; Lee, C.-H.; Gerdes, D.; Adams, F.; Becker, J.; Napier, K.; Markwardt, L. Detection of Diatomic Carbon in 2I/Borisov. Astrophys. J. 2020, 889, 30. [Google Scholar]
- Hatice, T.A.; Betül, S.U.; Fakhriddin, S.; Selma, U.; Nilüfer, Y.; Mehmet, C.Ö.; Sidre, E.; Atike, B.T.; Funda, D.-A.; Kamil, B. Rose Bengal-Mediated Photodynamic Antimicrobial Treatment of Acanthamoeba Keratitis. Curr. Eye Res. 2020, 45, 1205–1210. [Google Scholar]
- Smith, A.F.; Zhao, B.; You, M. Microfluidic DNA-based potassium nanosensors for improved dialysis treatment. BioMed. Eng. Online 2019, 18, 73. [Google Scholar]
- Chase, A.P.; Boss, E.S.; Haëntjens, N.; Culhane, E.; Roesler, C.; Karp-Boss, L. Plankton Imagery Data Inform Satellite-Based Estimates of Diatom Carbon. Geophys. Res. Lett. 2022, 49, 13. [Google Scholar] [CrossRef]
- Kaufmann, F.; Forster, C.; Hummel, M.; Olowinsky, A.; Beckmann, F.; Moosmann, J.; Roth, S.; Schmidt, M. Characterization of Vapor Capillary Geometry in Laser Beam Welding of Copper with 515 nm and 1030 nm Laser Beam Sources by Means of In Situ Synchrotron X-ray Imaging. Metals 2023, 13, 135. [Google Scholar] [CrossRef]
- Hornung, M.; Becker, G.A.; Seidel, A.; Reislöhner, J.; Liebetrau, H.; Bock, L.; Keppler, S.; Kessler, A.; Zepf, M.; Hein, J.; et al. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast. Appl. Sci. 2015, 5, 1970–1979. [Google Scholar] [CrossRef] [Green Version]
- Boye, R.R.; Raymond, K.K. Investigation of the effect of finite grating size on the performance of guided-mode resonance filters. Appl. Opt. 2000, 39, 3649–3653. [Google Scholar] [CrossRef]
- Gambino, F.; Giaquinto, M.; Ricciardi, A.; Cusano, A. A review on dielectric resonant gratings: Mitigation of finite size and Gaussian beam size effects. Results Opt. 2022, 6, 100210. [Google Scholar]
- Efremova, E.A.; Perminov, S.V.; Vergeles, S.S. Resonance behavior of diffraction on encapsulated guided-mode grating of subwavelength thickness. Photonics Nanostruct. -Fundam. Appl. 2021, 46, 100953. [Google Scholar] [CrossRef]
- Trupke, T.; Green, M.A.; WЁurfel, P. Optical gain in materials with indirect transitions. J. Appl. Phys. 2003, 93, 9058–9061. [Google Scholar] [CrossRef]
- Pavesi, L.; Dal, N.L.; Mazzoleni, C.; Franzo, G.; Priolo, F. Optical gain in silicon nanocrystals. Nature 2000, 408, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, S.; Kossyrev, P.; Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nat. Mater. 2005, 4, 887–891. [Google Scholar] [CrossRef]
- Pavesi, L. Silicon-Based Light Sources for Silicon Integrated Circuits. Adv. Opt. Technol. 2008, 2008, 416926. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krylov, I.R.; Prokhorova, U.V.; Stolyarov, V.A.; Efremova, E.A.; Zinchik, A.A.; Shalymov, E.V.; Shoev, V.I.; Masygin, D.V.; Venediktov, V.Y. Peculiarities of the Resonant Response of a Subwavelength Double Grating with Optical PT-Symmetry. Photonics 2023, 10, 721. https://doi.org/10.3390/photonics10070721
Krylov IR, Prokhorova UV, Stolyarov VA, Efremova EA, Zinchik AA, Shalymov EV, Shoev VI, Masygin DV, Venediktov VY. Peculiarities of the Resonant Response of a Subwavelength Double Grating with Optical PT-Symmetry. Photonics. 2023; 10(7):721. https://doi.org/10.3390/photonics10070721
Chicago/Turabian StyleKrylov, Igor R., Uliana V. Prokhorova, Vasiliy A. Stolyarov, Ekaterina A. Efremova, Alexander A. Zinchik, Egor V. Shalymov, Vladislav I. Shoev, Dmitriy V. Masygin, and Vladimir Yu. Venediktov. 2023. "Peculiarities of the Resonant Response of a Subwavelength Double Grating with Optical PT-Symmetry" Photonics 10, no. 7: 721. https://doi.org/10.3390/photonics10070721
APA StyleKrylov, I. R., Prokhorova, U. V., Stolyarov, V. A., Efremova, E. A., Zinchik, A. A., Shalymov, E. V., Shoev, V. I., Masygin, D. V., & Venediktov, V. Y. (2023). Peculiarities of the Resonant Response of a Subwavelength Double Grating with Optical PT-Symmetry. Photonics, 10(7), 721. https://doi.org/10.3390/photonics10070721