Evolving Role of Lasers in Endourology: Past, Present and Future of Lasers
Abstract
:1. Introduction
2. Lasers and Urolithiasis
2.1. Neodymium-Doped Yttrium Aluminium Garnet Laser: Nd:YAG Laser
2.2. Holmium Laser: Ho:YAG Laser
2.3. Thulium Fibre Laser (TFL)
3. Clinical Influence of Laser in Urolithiasis
3.1. PCNL and Laser
3.2. Role of Temperature with Laser Use
4. Lasers and Urothelial Tumours
4.1. Ho:YAG, Nd:YAG and Thulium Lasers for Urothelial Cancer
4.2. Diode Laser
4.3. Combination of Treatments and Oncologic Outcomes
4.4. Complications: Stricture/Recurrence
5. Lasers and Benign Prostatic Hyperplasia (BPH)
5.1. Nd:YAG Laser
5.2. Holmium Laser
5.3. Thulium Laser
5.4. Potassium-Titanyl-Phosphate (KTP) and Lithium Triborate (LBO) Lasers: Greenlight-Based PVP
5.5. Diode Laser
6. Limitations
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dołowy, Ł.; Krajewski, W.; Dembowski, J.; Zdrojowy, R.; Kołodzej, A. The role of lasers in modern urology. Cent. Eur. J. Urol. 2015, 68, 175–182. [Google Scholar] [CrossRef]
- Pietropaolo, A.; Hughes, T.; Mani, M.; Somani, B. Outcomes of ureteroscopy and laser stone fragmentation (URSL) for kidney stone disease (KSD): Comparative cohort study using moses technology 60 w laser system versus regular holmium 20 w laser. J. Clin. Med. 2021, 10, 2742. [Google Scholar] [CrossRef]
- Skolarikos, A.; Neisius, A.; Petřík, A.; Somani, B.; Thomas, K.; Gambaro, G. EAU Guidelines on Urolithiasis. 2023. Available online: https://uroweb.org/guidelines/urolithiasis (accessed on 9 April 2023).
- Barone, B.; Crocetto, F.; Vitale, R.; Di Domenico, D.; Caputo, V.; Romano, F.; De Luca, L.; Bada, M.; Imbimbo, C.; Prezioso, D. Retrograde intra renal surgery versus percutaneous nephrolithotomy for renal stones >2 cm. A systematic review and meta-analysis. Minerva Urol. Nephrol. 2020, 72, 441–450. [Google Scholar] [CrossRef]
- Erhard, M.J.; Bagley, D.H. Urologic Applications of the Holmium Laser: Preliminary Experience. J. Endourol. 1995, 9, 383–386. [Google Scholar] [CrossRef]
- Brewin, A.; Somani, B. What is new in lasers for endourology: Looking into the future. Urol. News 2021, 25, 2. [Google Scholar]
- Schembri, M.; Sahu, J.; Aboumarzouk, O.; Pietropaolo, A.; Somani, B.K. Thulium fiber laser: The new kid on the block. Turk. J. Urol. 2020, 46 (Suppl. S1), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Basulto-Martínez, M.; Proietti, S.; Yeow, Y.; Rapallo, I.; Saitta, G.; Cimino, S.; Luciani, L.; Bellinzoni, P.; Gaboardi, F.; Giusti, G. Holmium laser for RIRS. Watts are we doing? Arch. Esp. Urol. 2020, 73, 735–744. [Google Scholar] [PubMed]
- Matlaga, B.R.; Chew, B.; Eisner, B.; Humphreys, M.; Knudsen, B.; Krambeck, A.; Lange, D.; Lipkin, M.; Miller, N.L.; Monga, M.; et al. Ureteroscopic Laser Lithotripsy: A Review of Dusting vs. Fragmentation with Extraction. J. Endourol. 2018, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.E.; Hollander, A.B.; Soni, S.D.; Link, R.E.; Mayer, W.A. To Dust or Not To Dust: A Systematic Review of Ureteroscopic Laser Lithotripsy Techniques. Curr. Urol. Rep. 2017, 18, 32. [Google Scholar] [CrossRef]
- Kronenberg, P.; Somani, B. Advances in Lasers for the Treatment of Stones—A Systematic Review. Curr. Urol. Rep. 2018, 19, 45. [Google Scholar] [CrossRef]
- Fuh, E.; Haleblian, G.E.; Norris, R.D.; Albala, W.D.M.; Simmons, N.; Zhong, P.; Preminger, G.M. The Effect of Frequency Doubled Double Pulse Nd: YAG Laser Fiber Proximity to the Target Stone on Transient Cavitation and Acoustic Emission. J. Urol. 2007, 177, 1542–1545. [Google Scholar] [CrossRef] [PubMed]
- Emiliani, E.; Talso, M.; Cho, S.-Y.; Baghdadi, M.; Mahmoud, S.; Pinheiro, H.; Traxer, O. Optimal Settings for the Noncontact Holmium: YAG Stone Fragmentation Popcorn Technique. J. Urol. 2017, 198, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Pietropaolo, A.; Jones, P.; Whitehurst, L.; Somani, B.K. Role of ‘dusting and pop-dusting’ using a high-powered (100 W) laser machine in the treatment of large stones (≥15 mm): Prospective outcomes over 16 months. Urolithiasis 2019, 47, 391–394. [Google Scholar] [CrossRef]
- Reeves, T.; Griffin, S.; Pietropaolo, A.; Somani, B.K. Feasibility of dusting and pop-dusting using high-power (100W) holmium YAG (HO: YAG) laser in treatment of paediatric stones: Results of first worldwide clincial study. Cent. Eur. J. Urol. 2019, 72, 398–401. [Google Scholar]
- Ibrahim, A.; Badaan, S.; Elhilali, M.M.; Andonian, S. Moses technology in a stone simulator. Can. Urol. Assoc. J. 2018, 12, 127–130. [Google Scholar] [CrossRef]
- Keller, E.X.; De Coninck, V.; Audouin, M.; Doizi, S.; Bazin, D.; Daudon, M.; Traxer, O. Fragments and dust after Holmium laser lithotripsy with or without “Moses technology”: How are they different? J. Biophotonics 2019, 12, e201800227. [Google Scholar] [CrossRef] [PubMed]
- Winship, B.; Wollin, D.A.; Carlos, E.C.; Li, M.J.; Peters, M.C.; Simmons, W.N.; Preminger, G.M.; Lipkin, M.E. Dusting Efficiency of the Moses Holmium Laser: An Automated In Vitro Assessment. J. Endourol. 2018, 32, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Ventimiglia, E.; Pauchard, F.; Quadrini, F.; Sindhubodee, S.; Kamkoum, H.; Godínez, A.J.; Doizi, S.; Traxer, O. High- and Low-Power Laser Lithotripsy Achieves Similar Results: A Systematic Review and Meta-Analysis of Available Clinical Series. J. Endourol. 2021, 35, 1146–1152. [Google Scholar] [CrossRef]
- Kronenberg, P.; Traxer, O. The laser of the future: Reality and expectations about the new thulium fiber laser—A systematic review. Transl. Androl. Urol. 2019, 8, S398–S417. [Google Scholar] [CrossRef]
- Enikeev, D.; Grigoryan, V.; Fokin, I.; Morozov, A.; Taratkin, M.; Klimov, R.; Kozlov, V.; Gabdullina, S.; Glybochko, P. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: A single-center experience. Int. J. Urol. 2021, 28, 261–265. [Google Scholar] [CrossRef]
- Hardy, L.A.; Vinnichenko, V.; Fried, N.M. High power holmium: YAG versus thulium fiber laser treatment of kidney stones in dusting mode: Ablation rate and fragment size studies. Lasers Surg. Med. 2019, 51, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Vaddi, C.M.; Ramakrishna, P.; Ganeshan, S.; Swamy, S.; Anandan, H.; Babu, M.; Panda, R. The clinical efficiency and safety of 60W superpulse thulium fiber laser in retrograde intrarenal surgery. Indian J. Urol. 2022, 38, 191–196. [Google Scholar] [PubMed]
- Taratkin, M.; Azilgareeva, C.; Korolev, D.; Barghouthy, Y.; Tsarichenko, D.; Akopyan, G.; Chinenov, D.; Ali, S.; Kozlov, V.; Mikhailov, V.; et al. Prospective Single-Center Study of SuperPulsed Thulium Fiber Laser in Retrograde Intrarenal Surgery: Initial Clinical Data. Urol. Int. 2022, 106, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Ulvik, Ø.; Æsøy, M.S.; Juliebø-Jones, P.; Gjengstø, P.; Beisland, C. Thulium Fibre Laser versus Holmium: YAG for Ureteroscopic Lithotripsy: Outcomes from a Prospective Randomised Clinical Trial. Eur. Urol. 2022, 82, 73–79. [Google Scholar] [CrossRef]
- Keat, W.O.L.; Somani, B.K.; Pietropaolo, A.; Chew, B.H.; Chai, C.A.; Inoue, T.; Ragoori, D.; Biligere, S.; Galosi, A.B.; Pavia, M.P.; et al. Do Hounsfield Units have any significance in predicting intra- and postoperative outcomes in retrograde intrarenal surgery using Holmium and Thulium fiber laser? Results from the flexible ureteroscopy Outcomes Registry (FLEXOR). World J. Urol. 2023. ahead of print. [Google Scholar] [CrossRef]
- Ryan, J.R.; Nguyen, M.H.; Linscott, J.A.; Nowicki, S.W.; James, E.; Jumper, B.M.; Ordoñez, M.; Ingimarsson, J.P. Ureteroscopy with thulium fiber laser lithotripsy results in shorter operating times and large cost savings. World J. Urol. 2022, 40, 2077–2082. [Google Scholar] [CrossRef]
- Perri, D.; Berti, L.; Pacchetti, A.; Morini, E.; Maltagliati, M.; Besana, U.; Pastore, A.L.; Romero-Otero, J.; Saredi, G.; Centrella, D.; et al. A comparison among RIRS and MiniPerc for renal stones between 10 and 20 mm using thulium fiber laser (Fiber Dust): A randomized controlled trial. World J. Urol. 2022, 40, 2555–2560. [Google Scholar] [CrossRef]
- Rice, P.; Somani, B.K. Percutaneous laser nephrolithotripsy: Is it here to stay? Results of a systematic review. Curr. Opin. Urol. 2022, 32, 185–191. [Google Scholar] [CrossRef]
- Ghani, K.R.; Andonian, S.; Bultitude, M.; Desai, M.; Giusti, G.; Okhunov, Z.; Preminger, G.M.; de la Rosette, J. Percutaneous Nephrolithotomy: Update, Trends, and Future Directions. Eur. Urol. 2016, 70, 382–396. [Google Scholar] [CrossRef]
- Moore, S.L.; Bres-Niewada, E.; Cook, P.; Wells, H.; Somani, B.K. Optimal management of lower pole stones: The direction of future travel. Cent. Eur. J. Urol. 2016, 69, 274–279. [Google Scholar]
- De, S.; Autorino, R.; Kim, F.J.; Zargar, H.; Laydner, H.; Balsamo, R.; Torricelli, F.C.; Di Palma, C.; Molina, W.R.; Monga, M.; et al. Percutaneous Nephrolithotomy versus Retrograde Intrarenal Surgery: A Systematic Review and Meta-analysis. Eur. Urol. 2015, 67, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Chen, H.; Yu, X.; Chen, Z.; Ye, Z.; Yuan, H. The “all-seeing needle” micro-PCNL versus flexible ureterorenoscopy for lower calyceal stones of ≤2 cm. Urolithiasis 2019, 47, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hong, T.Y.; Li, G.; Jiang, N.; Hu, C.; Cui, X.; Chu, C.; Zhao, J. Comparison of the Efficacy of Ultra-Mini PCNL, Flexible Ureteroscopy, and Shock Wave Lithotripsy on the Treatment of 1–2 cm Lower Pole Renal Calculi. Urol. Int. 2019, 102, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, P.; Hameed, B.M.Z.; Somani, B. Outcomes of thulium fibre laser for treatment of urinary tract stones: Results of a systematic review. Curr. Opin. Urol. 2021, 31, 80–86. [Google Scholar] [CrossRef]
- Andreeva, V.; Vinarov, A.; Yaroslavsky, I.; Kovalenko, A.; Vybornov, A.; Rapoport, L.; Enikeev, D.; Sorokin, N.; Dymov, A.; Tsarichenko, D.; et al. Preclinical comparison of superpulse thulium fiber laser and a holmium: YAG laser for lithotripsy. World J. Urol. 2020, 38, 497–503. [Google Scholar] [CrossRef]
- Patil, A.; Reddy, N.; Shah, D.; Singh, A.; Ganpule, A.; Sabnis, R.; Desai, M. High-Power Holmium with MOSES Technology or Thulium Fiber Laser in MiniPerc with Suction: A New Curiosity. J. Endourol. 2022, 36, 1348–1354. [Google Scholar] [CrossRef]
- Taratkin, M.; Azilgareeva, C.; Chinenov, D.; Mikhailov, V.; Inoyatov, J.; Ali, S.; Korolev, D.; Tsarichenko, D.; Corrales, M.; Enikeev, D. Retrograde intrarenal surgery versus percutaneous nephro-lithotomy in larger kidney stones. Could superpulsed thulium-fiber laser change the game? Cent Eur. J. Urol. 2021, 74, 229–234. [Google Scholar]
- Rice, P.; Somani, B.K.; Nagele, U.; Herrmann, T.R.W.; Tokas, T. Generated temperatures and thermal laser damage during upper tract endourological procedures using the holmium: Yttrium–aluminum-garnet (Ho: YAG) laser: A systematic review of experimental studies. World J. Urol. 2022, 40, 1981–1992. [Google Scholar] [CrossRef]
- Tokas, T.; Rice, P.; Seitz, C.; Gauhar, V.; Somani, B. Temperature change during laser upper-tract endourological procedures: Current evidence and future perspective. Curr. Opin. Urol. 2023, 33, 108–115. [Google Scholar] [CrossRef]
- Yamashita, S.; Inoue, T.; Imai, S.; Kohjimoto, Y.; Fujisawa, M.; Hara, I. Thermography-based comparison of irrigation temperatures between Moses Mode and Virtual Basket Mode: An in-vitro phantom study. J. Endourol. 2023, 37, 179–184. [Google Scholar] [CrossRef]
- Teng, J.; Wang, Y.; Jia, Z.; Guan, Y.; Fei, W.; Ai, X. Temperature profiles of calyceal irrigation fluids during flexible ureteroscopic Ho: YAG laser lithotripsy. Int. Urol. Nephrol. 2021, 53, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Belle, J.D.; Chen, R.; Srikureja, N.; Amasyali, A.S.; Keheila, M.; Duane Baldwin, D. Does the Novel Thulium Fiber Laser Have a Higher Risk of Urothelial Thermal Injury than the Conventional Holmium Laser in an in Vitro Study? J. Endourol. 2022, 36, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Sierra, A.; Corrales, M.; Somani, B.; Traxer, O. Laser Efficiency and Laser Safety: Holmium YAG vs. Thulium Fiber Laser. J. Clin. Med. 2023, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Rouprêt, M.; Babjuk, M.; Burger, M.; Compérat, E.; Cowan, N.; Gontero, P. EAU Guidelines on Upper Urinary Tract Urothelial Carcinoma. 2023. Available online: https://uroweb.org/guidelines/upper-urinary-tract-urothelial-cell-carcinoma (accessed on 9 April 2023).
- Gkolezakis, V.; Rice, P.; Somani, B.K.; Tokas, T. Thulium Fiber Laser Behavior on Tissue During Upper- and Lower-Tract Endourology. Curr. Urol. Rep. 2022, 23, 271–278. [Google Scholar] [CrossRef]
- Villa, L.; Haddad, M.; Capitanio, U.; Somani, B.; Cloutier, J.; Doizi, S.; Salonia, A.; Briganti, A.; Montorsi, F.; Traxer, O. Which Patients with Upper Tract Urothelial Carcinoma Can be Safely Treated with Flexible Ureteroscopy with Holmium: YAG Laser Photoablation? Long-Term Results from a High Volume Institution. J. Urol. 2018, 199, 66–73. [Google Scholar] [CrossRef]
- Huusmann, S.; Lafos, M.; Meyenburg, I.; Muschter, R.; Teichmann, H.O.; Herrmann, T. Tissue effects of a newly developed diode pumped pulsed Thulium: YAG laser compared to continuous wave Thulium: YAG and pulsed Holmium: YAG laser. World J. Urol. 2021, 39, 3503–3508. [Google Scholar] [CrossRef]
- Ng Chieng Hin, J.; Hettiarachchilage, D.; Gravestock, P.; Rai, B.; Somani, B.K.; Veeratterapillay, R. Role of Ureteroscopy in Treatment of Upper Tract Urothelial Carcinoma. Curr. Urol. Rep. 2021, 22, 49. [Google Scholar] [CrossRef]
- Zarrabi, A.; Gross, A.J. The evolution of lasers in urology. Ther. Adv. Urol. 2011, 3, 81–89. [Google Scholar] [CrossRef]
- Lee, J.; Gianduzzo, T.R.J. Advances in Laser Technology in Urology. Urol. Clin. N. Am. 2009, 36, 189–198. [Google Scholar] [CrossRef]
- Proietti, S.; Johnston, T.; Pupulin, M.; Di Pietro, S.; Spagna, S.; Rico, L.; Lucianò, R.; Ventimiglia, E.; Villa, L.; Gaboardi, F.; et al. Effectiveness and Safety of Thulium Fiber Laser in the Conservative Management of Patients with Upper Tract Urothelial Carcinoma. Eur. Urol. Open Sci. 2022, 46, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Huusmann, S.; Wolters, M.; Kramer, M.W.; Bach, T.; Teichmann, H.-O.; Eing, A.; Bardosi, S.; Herrmann, T.R.W. Tissue damage by laser radiation: An in vitro comparison between Tm: YAG and Ho: YAG laser on a porcine kidney model. Springerplus 2016, 5, 266. [Google Scholar] [CrossRef] [PubMed]
- Ortner, G.; Rice, P.; Nagele, U.; Herrmann, T.R.W.; Somani, B.K.; Tokas, T. Tissue thermal effect during lithotripsy and tissue ablation in endourology: A systematic review of experimental studies comparing Holmium and Thulium lasers. World J. Urol. 2023, 41, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, E.; Wendt-Nordahl, G.; Honeck, P.; Alken, P.; Knoll, T.; Michel, S.M.; Häcker, A. 120 W lithium triborate laser for photoselective vaporization of the prostate: Comparison with 80 W potassium-titanyl-phosphate laser in an ex-vivo model. J. Endourol. 2010, 24, 75–79. [Google Scholar] [CrossRef]
- Rahman, K.M.M.; Giram, P.; Foster, B.A.; You, Y. Photodynamic Therapy for Bladder Cancers, A Focused Review. Photochem. Photobiol. 2023, 99, 420–436. [Google Scholar] [CrossRef]
- Wu, K.; Jiang, D.; Zhang, L.; Jiang, S.; Lin, T.; Luo, Y.; Fan, J.; Yang, T.; Chen, H.; Zhang, P.; et al. Efficacy and safety of a novel 450 nm blue diode laser versus plasmakinetic electrocautery for the transurethral resection of non-muscle invasive bladder cancer: The protocol and result of a multicenter randomized con-trolled trial. Front. Oncol. 2023, 12, 1065735. [Google Scholar] [CrossRef]
- Cornu, J.-N.; Rouprêt, M.; Carpentier, X.; Geavlete, B.; Medina, S.G.D.D.; Cussenot, O.; Traxer, O. Oncologic control obtained after exclusive flexible ureteroscopic management of upper urinary tract urothelial cell carcinoma. World J. Urol. 2010, 28, 151–156. [Google Scholar] [CrossRef]
- Bozzini, G.; Gastaldi, C.; Besana, U.; Calori, A.; Casellato, S.; Parma, P.; Pastore, A.L.; Macchi, A.; Breda, A.; Gozen, A.; et al. Thulium-laser Retrograde Intra Renal Ablation (T-RIRA) of upper urinary tract transitional cell carcinoma: An ESUT study. Minerva Urol. Nephrol. 2021, 73, 114–121. [Google Scholar] [CrossRef]
- Defidio, L.; De Dominicis, M.; Di Gianfrancesco, L.; Fuchs, G.; Patel, A. First collaborative experience with thulium laser ablation of localized upper urinary tract urothelial tumors using retrograde intra-renal surgery. Arch. Ital. Urol. Androl. 2011, 83, 147–153. [Google Scholar]
- Defidio, L.; Antonucci, M.; De Dominicis, M.; Fuchs, G.; Patel, A. Thulium-Holmium: YAG Duo Laser in Conservative Upper Tract Urothelial Cancer Treatment: 13 Years Experience from a Tertiary National Referral Center. J. Endourol. 2019, 33, 902–908. [Google Scholar] [CrossRef]
- Wen, J.; Ji, Z.G.; Li, H.Z. Treatment of upper tract urothelial carcinoma with ureteroscopy and thulium laser: A retrospective single center study. BMC Cancer 2018, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- Musi, G.; Mistretta, F.A.; Marenghi, C.; Russo, A.; Catellani, M.; Nazzani, S.; Conti, A.; Luzzago, S.; Ferro, M.; Matei, D.V.; et al. Thulium Laser Treatment of Upper Urinary Tract Carcinoma: A Multi-Institutional Analysis of Surgical and Oncological Outcomes. J. Endourol. 2018, 32, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Sanguedolce, F.; Fontana, M.; Turco, M.; Territo, A.; Lucena, J.B.; Cortez, J.C.; Vanacore, D.; Meneghetti, I.; Gallioli, A.; Gaya, J.M.; et al. Endoscopic Management of Upper Urinary Tract Urothelial Carcinoma: Oncologic Outcomes and Prognostic Factors in a Contemporary Cohort. J. Endourol. 2021, 35, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Scoffone, C.M.; Cracco, C.M.; Poggio, M.; Cossu, M.; Scarpa, R.M. Treatment of the pyelocalyceal tumors with laser. Arch. Esp. Urol. 2008, 61, 1080–1087. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Abu Dayyeh, B.K.; Bhat, Y.M.; Gottlieb, K.T.; Hwang, J.H.; Komanduri, S.; Konda, V.; Lo, S.K.; Manfredi, M.A.; Maple, J.T.; et al. Confocal laser endomicroscopy. Gastrointest. Endosc. 2014, 80, 928–938. [Google Scholar] [CrossRef]
- Vanacore, D.; Sanguedolce, F.; Territo, A.; Roca, B.M.; Saitta, G.; Tallè, M.; Martinez, C.; Mosquera, L.; Meneghetti, J.; Bevilacqua, G.; et al. Evolving techniques of endoscopic UTUC management: Optimising outcomes with the appropriate use of latest technologies. Eur. Urol. Open Sci. 2020, 19, e2374–e2375. [Google Scholar] [CrossRef]
- Cornu, J.N.; Gacci, M.; Hashim, H.; Herrmann, T.R.W.; Malde, S.; Netsch, C.; Rieken, M.; Sakalis, V.; Tutolo, M.; Baboudjian, M.; et al. EAU Guidelines on Non-Neurogenic Male LUTS. 2023. Available online: https://uroweb.org/guidelines/management-of-non-neurogenic-male-luts (accessed on 9 April 2023).
- Herrmann, T.R.W.; Liatsikos, E.N.; Nagele, U.; Traxer, O.; Merseburger, A.S. EAU guidelines on laser technologies. Eur. Urol. 2012, 61, 783–795. [Google Scholar] [CrossRef]
- Vincent, M.W.; Gilling, P.J. HoLEP has come of age. World J. Urol. 2015, 33, 487–493. [Google Scholar] [CrossRef]
- Xiao, K.-W.; Zhou, L.; He, Q.; Gao, X.-S.; Chen, G.; Ma, Y.-C.; Li, H.; Wang, K.-J. Enucleation of the prostate for benign prostatic hyperplasia thulium laser versus holmium laser: A systematic review and meta-analysis. Lasers Med. Sci. 2019, 34, 815–826. [Google Scholar] [CrossRef]
- Naspro, R.; Suardi, N.; Salonia, A.; Scattoni, V.; Guazzoni, G.; Colombo, R.; Cestari, A.; Briganti, A.; Mazzoccoli, B.; Rigatti, P.; et al. Holmium Laser Enucleation of the Prostate versus Open Pros-tatectomy for Prostates >70 g: 24-Month Follow-up. Eur. Urol. 2006, 50, 563–568. [Google Scholar] [CrossRef]
- Kuntz, R.M.; Lehrich, K.; Ahyai, S.A. Holmium Laser Enucleation of the Prostate versus Open Prostatectomy for Prostates Greater than 100 Grams: 5-Year Follow-Up Results of a Randomised Clinical Trial. Eur. Urol. 2008, 53, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Cornu, J.-N.; Ahyai, S.; Bachmann, A.; de la Rosette, J.; Gilling, P.; Gratzke, C.; McVary, K.; Novara, G.; Woo, H.; Madersbacher, S. A Systematic Review and Meta-analysis of Functional Outcomes and Complications Following Transurethral Procedures for Lower Urinary Tract Symptoms Resulting from Benign Prostatic Obstruction: An Update. Eur. Urol. 2015, 67, 1066–1096. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Alzweri, L.; Rai, B.P.; Somani, B.K.; Bates, C.; Aboumarzouk, O.M. Holmium laser enucleation versus simple prostatectomy for treating large prostates: Results of a systematic review and meta-analysis. Arab J. Urol. 2016, 14, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Gkolezakis, V.; Somani, B.K.; Tokas, T. Low- vs. High-Power Laser for Holmium Laser Enucleation of Prostate. J. Clin. Med. 2023, 12, 2084. [Google Scholar] [CrossRef]
- Gong, Y.-G.; He, D.-L.; Wang, M.-Z.; Li, X.-D.; Zhu, G.-D.; Zheng, Z.-H.; Du, Y.-F.; Chang, L.S.; Nan, X.-Y. Holmium Laser Enucleation of the Prostate: A Modified Enucleation Technique and Initial Results. J. Urol. 2012, 187, 1336–1340. [Google Scholar] [CrossRef]
- Rassweiler, J.; Roder, M.; Schulze, M.; Muschter, R. Transurethral enucleation of the prostate with the holmium: YAG laser system: How much power is necessary? Urol. A 2008, 47, 441–448. [Google Scholar] [CrossRef]
- Gauhar, V.; Gilling, P.; Pirola, G.M.; Chan, V.W.-S.; Lim, E.J.; Maggi, M.; Teoh, J.Y.-C.; Krambeck, A.; Castellani, D. Does MOSES Technology Enhance the Efficiency and Outcomes of Standard Holmium Laser Enucleation of the Prostate? Results of a Systematic Review and Meta-analysis of Comparative Studies. Eur. Urol. Focus 2022, 8, 1362–1369. [Google Scholar] [CrossRef]
- Bach, T.; Netsch, C.; Haecker, A.; Michel, M.S.; Herrmann, T.R.W.; Gross, A.J. Thulium: YAG laser enucleation (VapoEnucleation) of the prostate: Safety and durability during intermediate-term follow-up. World J. Urol. 2010, 28, 39–43. [Google Scholar] [CrossRef]
- Herrmann, T.R.; Bach, T.; Imkamp, F.; Georgiou, A.; Burchardt, M.; Oelke, M.; Gross, A.J. Thulium laser enucleation of the prostate (ThuLEP): Tran-surethral anatomical prostatectomy with laser support. Introduction of a novel technique for the treatment of benign prostatic obstruction. World J. Urol. 2010, 28, 45–51. [Google Scholar] [CrossRef]
- Hartung, F.O.; Kowalewski, K.-F.; von Hardenberg, J.; Worst, T.S.; Kriegmair, M.C.; Nuhn, P.; Herrmann, T.R.; Michel, M.S.; Herrmann, J. Holmium versus Thulium Laser Enucleation of the Prostate: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Eur. Urol. Focus 2022, 8, 545–554. [Google Scholar] [CrossRef]
- Bozzini, G.; Berti, L.; Maltagliati, M.; Besana, U.; Micali, S.; Roche, J.B.; Romero-Otero, J.; Pacchetti, A.; Perri, D.; Morini, E.; et al. Thulium: YAG vs. continuous-wave thulium fiber laser enucleation of the prostate: Do potential advantages of thulium fiber lasers translate into relevant clinical differences? World J. Urol. 2023, 41, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, T.R.W.; Wolters, M. Transurethral anatomical enucleation of the prostate with Tm: YAG support (ThuLEP): Evolution and variations of the technique. The inventors’ perspective. Andrologia 2020, 52, e13587. [Google Scholar] [CrossRef] [PubMed]
- Netsch, C.; Becker, B.; Tiburtius, C.; Moritz, C.; Becci, A.V.; Herrmann, T.R.W.; Gross, A.J. A prospective, randomized trial comparing thulium vapoenu-cleation with holmium laser enucleation of the prostate for the treatment of symptomatic benign prostatic obstruction: Perioperative safety and efficacy. World J. Urol. 2017, 35, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.; Herrmann, T.R.W.; Gross, A.J.; Netsch, C. Thulium vapoenucleation of the prostate versus holmium laser enucleation of the prostate for the treatment of large volume prostates: Preliminary 6-month safety and efficacy results of a prospective randomized trial. World J. Urol. 2018, 36, 1663–1671. [Google Scholar] [CrossRef]
- Jones, P.; Rai, B.P.; Somani, B.K.; Aboumarzouk, O.M. A review of thulium laser vapo-enucleation of the prostate: A novel laser-based strategy for benign prostate enlargement. Arab J. Urol. 2015, 13, 209–211. [Google Scholar] [CrossRef]
- Broggi, E.; May, A.; Giretti, G.; Tabchouri, N.; Lorphelin, H.; Brichart, N.; Bruyère, F. Long-Term Outcomes of 80-Watt KTP and 120-Watt HPS GreenLight Photoselective Vaporization of the Prostate. Urol. Int. 2014, 93, 229–236. [Google Scholar] [CrossRef]
- Gomez Sancha, F.; Rivera, V.C.; Georgiev, G.; Botsevski, A.; Kotsev, J.; Herrmann, T. Common trend: Move to enucleation—Is there a case for GreenLight enucleation? Development and description of the technique. World J. Urol. 2015, 33, 539–547. [Google Scholar] [CrossRef]
- Thangasamy, I.A.; Chalasani, V.; Bachmann, A.; Woo, H.H. Photoselective vaporisation of the prostate using 80-W and 120-W laser versus tran-surethral resection of the prostate for benign prostatic hyperplasia: A systematic review with meta-analysis from 2002 to 2012. Eur. Urol. 2012, 62, 315–323. [Google Scholar] [CrossRef]
- Bachmann, A.; Tubaro, A.; Barber, N.; D’ancona, F.; Muir, G.; Witzsch, U.; Grimm, M.-O.; Benejam, J.; Stolzenburg, J.-U.; Riddick, A.; et al. 180-W XPS greenlight laser vaporisation versus transurethral resection of the prostate for the treatment of benign prostatic obstruction: 6-month safety and efficacy results of a European multicentre ran-domised trial—The GOLIATH study. Eur. Urol. 2014, 65, 931–942. [Google Scholar] [CrossRef]
- Thomas, J.A.; Tubaro, A.; Barber, N.; D’Ancona, F.; Muir, G.; Witzsch, U.; Grimm, M.-O.; Benejam, J.; Stolzenburg, J.-U.; Riddick, A.; et al. A Multicenter Randomized Noninferiority Trial Comparing GreenLight-XPS Laser Vaporization of the Prostate and Transurethral Resection of the Prostate for the Treatment of Benign Prostatic Obstruction: Two-yr Outcomes of the GOLIATH Study. Eur. Urol. 2016, 69, 94–102. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Yan, D.; Jiang, T.; Fu, J.; Zheng, J.; Zhou, Y.; Zhou, Z.; Shen, W. Photoselective sharp enucleation of the prostate with a front-firing 532-nm laser versus photoselective vaporization of the prostate in the treatment of benign prostatic hyperplasia: A randomised controlled trial with 1-year followup results. BMC Urol. 2022, 22, 173. [Google Scholar]
- Chiang, P.H.; Chen, C.H.; Kang, C.H.; Chuang, Y.C. GreenLight HPS laser 120-W versus diode laser 200-W vaporization of the prostate: Comparative clinical experience. Lasers Surg. Med. 2010, 42, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Lusuardi, L.; Myatt, A.; Sieberer, M.; Jeschke, S.; Zimmermann, R.; Janetschek, G. Safety and efficacy of eraser laser enucleation of the prostate: Preliminary report. J. Urol. 2011, 186, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Zhang, Y.; Shi, C.; Tu, M.; Shi, G. 1470 nm Diode Laser Enucleation vs. Plasmakinetic Resection of the Prostate for Benign Prostatic Hyperplasia: A Randomized Study. J. Endourol. 2019, 33, 211–217. [Google Scholar] [CrossRef]
- Zou, Z.; Xu, A.; Zheng, S.; Chen, B.; Xu, Y.; Li, H.; Duan, C.; Zheng, J.; Chen, J.; Li, C.; et al. Dual-centre randomized-controlled trial comparing transurethral endoscopic enucleation of the prostate using diode laser vs. bipolar plasmakinetic for the treatment of LUTS secondary of benign prostate obstruction: 1-year follow-up results. World J. Urol. 2018, 36, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Li, T.; Ferreira, R.; Berjaoui, M.B.; Nguyen, A.L.V.; Chughtai, B.; Zorn, K.Z.; Bhojani, N.; Elterman, D. Ablative minimally invasive surgical therapies for benign prostatic hyperplasia: A review of Aquablation, Rezum, and transperineal laser prostate ablation. Prostate Cancer Prostatic Dis. 2023. ahead of print. [Google Scholar] [CrossRef]
- Lerner, L.B.; McVary, K.T.; Barry, M.J.; Bixler, B.R.; Dahm, P.; Das, A.K.; Gandhi, M.C.; Kaplan, S.A.; Kohler, T.S.; Martin, L.; et al. Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA GUIDELINE PART II-Surgical Evaluation and Treatment. J. Urol. 2021, 206, 818–826. [Google Scholar] [CrossRef]
- Elterman, D.; Aubé-Peterkin, M.; Evans, H.; Elmansy, H.; Meskawi, M.; Zorn, K.C.; Naeem, B. UPDATE—2022 Canadian Urological Association guideline on male lower urinary tract symptoms/benign prostatic hyperplasia (MLUTS/BPH). Can. Urol. Assoc. J. 2022, 16, 245–256. [Google Scholar] [CrossRef]
- Pietropaolo, A.; Mani, M.; Hughes, T.; Somani, B.K. Role of low- versus high-power laser in the treatment of lower pole stones: Prospective non-randomized outcomes from a university teaching hospital. Ther. Adv. Urol. 2022, 14, 17562872221097345. [Google Scholar] [CrossRef]
- Somani, B.K.; Robertson, A.; Kata, S.G. Decreasing the Cost of Flexible Ureterorenoscopic Procedures. Urology 2011, 78, 528–530. [Google Scholar] [CrossRef]
- Chapman, R.A.; Somani, B.K.; Robertson, A.; Healy, S.; Kata, S.G. Decreasing the cost of flexible ureterorenoscopy: Single-use laser fiber cost analysis. Urology 2014, 83, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, R.M.; Jones, P.; Herrmann, T.R.; Aboumarzouk, O.; Somani, B.K. Ureteroscopy is more cost effective than shockwave lithotripsy for stone treatment: Systematic review and meta-analysis. World J. Urol. 2018, 36, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, R.M.; Davis, N.F.; Tzelves, L.; Lombardo, R.; Yuan, C.; Thomas, K.; Petrik, A.; Neisius, A.; Türk, C.; Gambaro, G.; et al. Best Practice in Interventional Management of Urolithiasis: An Update from the European Association of Urology Guidelines Panel for Urolithiasis 2022. Eur. Urol. Focus 2023, 9, 199–208. [Google Scholar] [CrossRef] [PubMed]
Laser Type | Advancement or Technical Aspect | Benefit | Disadvantages | Techniques Used |
---|---|---|---|---|
Nd:YAG (neodymium-doped yttrium aluminium garnet) | - Wavelength 1064 nm | - Lower thermal effects on ureter than high-power lasers | - Difficulty in fragmenting “hard” stone | - Fragmentation |
Thulium fibre laser (TFL) | - Highly versatile: Frequency up to 2000 Hz, wide range Energy pulse (0.005-6J); - Wavelength 1940 nm (may vary between 1810 and 2100 depending on the design of TFL) - High power laser | - Smaller fibres, “micro-explosion mechanisms” → instrument advantage and faster procedures - Lower retropulsion than Ho:YAG laser (not when applied to MOSES) | - Higher renal and ureteral temperatures with the use of high-power lasers → to maintain the temperature ≤43 °C use irrigation, UAS, on/off laser activation intervals, power below 40 W. | - Fragmentation - Dusting |
Laser Type | Use | Advancement or Technical Aspect | Benefit | Disadvantages | Techniques Used |
---|---|---|---|---|---|
Nd:YAG (neodymium-doped yttrium aluminium garnet) | - Urothelial lesions - Repair of mucosal injuries | - Wavelength 1064 nm - Coagulates tissue to depth of 4–6 up to 10 mm | - Safe in anticoagulated patients | - Should be avoided for ureteral tumors (increased risk of strictures) | - Tumor ablation (bladder) - Laser tissue soldering (LTS) |
Holmium (Ho):YAG | - Urothelial lesions - Strictures of upper and lower urinary tract | - Pulsed laser, 2140 nm - Small absorption depth (0.4 mm) → ideal for urological use in limited spaces (renal pelvis/ureter) - Deep incision and high tissue penetration - Simultaneous coagulation of small blood vessels - Great availability | - Small penetration depth and safer for small ureteric tumours | - Direct contact with the tumour surface - Can lead to some bleeding during coagulation | - Tumor ablation (bladder-UTUC), gold standard |
Thulium lasers: TFL QWC Tm:YAG CW TFL SuperPulsed | - Urothelial lesions | - Tm:YAG CW: continuous ablation with low penetration - TFL SuperPulased: maximum water absorption with penetration depth 0.3–0.4 mm, might be used as quasi-continuous | - Very little injury to surrounding tissue - TFL QWC: very controllable, incision depth and damage increase with increasing power - TFL SuperPulsed: improved cutting ability with reduced carbonization | - Tm:YAG CW: high tissue carbonization - Lack of large randomized clinical trials | - Tumor ablation (UTUC) |
Diode | - Bladder TCC - Photodynamic therapy | - Wavelength 810 to 1064 mm - Lower power - Penetration depth 1–3 mm - New blue diode laser, wavelength 450 nm | - Good hemostasis - Smaller box size compared to Nd:YAG laser | - Higher damage to the surrounding tissue | - Tumor ablation - Laser tissue soldering (LTS) |
Laser Type | Use | Advancement or Technical Aspect | Benefit | Disadvantages | Techniques Used |
---|---|---|---|---|---|
Nd:YAG | - Prostate ablation - Prostate coagulation | - Pulsed or continuous - Wavelength 1064 nm - Aborption depth: 10 mm - Chromophobe: water and haemoglobin - Non contact laser | - Safe in anticoagulated patients | - Deep coagulative necrosis → oedema causing irritative LUTS and urinary retention with prolonged catheterization | - Non-contact “visual laser ablation of the prostate” (VLAP) - Interstitial laser coagulation |
Holmium (Ho):YAG | - Prostate enucleation (HoLEP), vaporization | - Pulsed - Wavelength of 2140 nm - Absorption depth: 0.4 mm - Simultaneous coagulation of small blood vessels - Chromophobe: water - Contact laser | - Favourable functional outcomes, better haemostasis, shorter hospitalization and shorter catheterization vs. TURP - Power modulation: high power for enucleation, low-power for apical dissection - MoLEP: shorter enucleation time, haemostasis and lower hospitalization | - Can lead to some bleeding during coagulation | - Resection (HoLRP) - Low-power HoLEP - High-power HoLEP - MoLEP |
Thulium (Th): YAG | - Optical urethrotomy - Prostate vapo-resection (ThuVARP) - Prostate enucleation (ThuLEP, ThuFLEP) - Prostate vaporization (ThuVEP) | - Continuous - Wavelength 2000 nm - Absorption depth: 0.25 mm - Chromophobe: water - Contact and noncontact laser | - Reduced thermal damage causing irritative symptoms - ThuVEP: larger prostates and safe in anticoagulated patients | - Lack of large randomized clinical trials | - ThuVARP -ThuLEP/ThuFLEP - ThuVEP |
Greenlight, Potassium titanyl phosphate (KTP), lithium borate/triborate (LBO): YAG | - Bladder neck incision - Photoselective vaporization of prostate (PVP) - Photoselective sharp enucleation of the prostate (PSEP) - Prostate enucleation (GreenLEP) | - Quasi-continuous - Wavelength 532 nm - Absorption depth: 0.8 mm - Doubled frequency of Nd:YAG so shorter absorption depth - Chromophobe: haemoglobin - Contact and noncontact laser | - KTP: Virtually bloodless procedure → safe in anticoagulated patients - Reduced catheterization rates - LBO: Faster tissue ablation - LBO: Can be used to treat large prostate glands - PSEP: provide histologic sample | - KTP: Temperature increase of tissue not sufficient for vaporization - KTP: Scattering seen through coagulated layers and reduction in intensity - LBO: Reduced in haemostatic ability - PVP: Lack of histologic sample with PVP | - PVP - PSEP - GreenLEP |
Diode | - Prostate vaporization - Prostate enucleation | - Pulsed or continuous - Wavelength 940, 980, 1318, 1470 nm - Lower power - Penetration depth 0.5–5 mm - Chromophobe: water and haemoglobin - Contact laser | - Good haemostasis - Smaller box size compared to Nd:YAG laser | - High incidence of complications and postoperative irritative symptoms | - Vaporization - Enucleation - TPLA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerrato, C.; Jahrreiss, V.; Nedbal, C.; Pietropaolo, A.; Somani, B. Evolving Role of Lasers in Endourology: Past, Present and Future of Lasers. Photonics 2023, 10, 635. https://doi.org/10.3390/photonics10060635
Cerrato C, Jahrreiss V, Nedbal C, Pietropaolo A, Somani B. Evolving Role of Lasers in Endourology: Past, Present and Future of Lasers. Photonics. 2023; 10(6):635. https://doi.org/10.3390/photonics10060635
Chicago/Turabian StyleCerrato, Clara, Victoria Jahrreiss, Carlotta Nedbal, Amelia Pietropaolo, and Bhaskar Somani. 2023. "Evolving Role of Lasers in Endourology: Past, Present and Future of Lasers" Photonics 10, no. 6: 635. https://doi.org/10.3390/photonics10060635
APA StyleCerrato, C., Jahrreiss, V., Nedbal, C., Pietropaolo, A., & Somani, B. (2023). Evolving Role of Lasers in Endourology: Past, Present and Future of Lasers. Photonics, 10(6), 635. https://doi.org/10.3390/photonics10060635