Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure for High-Contrast Biomedical Applications
Abstract
:1. Introduction
2. Design Method and Simulation
2.1. Simulation Model and Materials
2.2. Methods and Formula
2.3. Simulation Results and Discussions
3. Experimental Section
3.1. Fabrication
3.2. Testing Process
4. Experimental Results and Discussion
4.1. Comparison of Experimental and Simulation Data
4.2. Experimental Results
4.3. Causes of Experimental Error
4.4. Comparison with Existing Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Kapraun, J.; Ferrara, J.; Chang-Hasnain, C. Flexible photonic metastructures for tunable coloration. Optica 2015, 3, 255. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, W.; Chang-Hasnain, C. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. Opt. Express 2017, 25, 18462–18473. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, H.; Shao, S. Polarization-insensitive ultra-narrow plasmon-induced transparency and short-range surface plasmon polariton bloch wave in ultra-thin metallic film nanostructures. Plasmonics 2019, 14, 139. [Google Scholar] [CrossRef]
- Han, C.; Wang, Z.; Lv, X.; Dai, J. Phase and Wavelength Sensitivities of Optical Refractive Index Sensor Based on Fano Resonance. IEEE Sens. J. 2022, 22, 21628–21634. [Google Scholar] [CrossRef]
- Chu, S.; Wang, Q.; Yu, L.; Gao, H.; Liang, Y.; Peng, W. Numerical investigation on multiple resonant modes of double-layer plasmonic grooves for sensing application. Nanomaterials 2020, 10, 308. [Google Scholar] [CrossRef]
- Luo, X.; Li, X.; Lang, T.; Jing, X.; Hong, Z. Excitation of high q toroidal dipole resonance in an all-dielectric metasurface. Opt. Mater. Express 2019, 10, 358. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, X.; Zhang, M.; Xiao, C.; Zhou, J. Fano resonance sensing based on coupled sub-wavelength dielectric grating and periodic photonic crystal. Phys. Lett. A 2020, 384, 126877. [Google Scholar] [CrossRef]
- Lim, W.; Han, S.; Gupta, M.; Macdonald, K.; Singh, R. Near-infrared linewidth narrowing in plasmonic fano-resonant metamaterials via tuning of multipole contributions. Appl. Phys. Lett. 2017, 111, 061104. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Y.; Ren, X.; Duan, X.; Li, Y.; Wang, Q.; Zhang, X.; Wang, J. Modeling of fano resonance in high-contrast resonant grating structures. Chin. Phys. Lett. 2014, 31, 064205. [Google Scholar] [CrossRef]
- Qiao, P.; Yang, W.; Chang-Hasnain, C. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. Adv. Opt. Photonics 2018, 10, 180. [Google Scholar] [CrossRef]
- Qian, L.; Wang, K.; Zhu, W.; Han, C.; Yan, C. Enhanced sensing ability in a single-layer guided-mode resonant optical biosensor with deep grating. Opt. Commun. 2019, 452, 273–280. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Zheludev, N.; Maier, S.; Halas, N.; Nordlander, P.; Giessen, H.; Chong, C. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Yang, Z.; Hao, Z.; Lin, H.; Wang, Q. Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale 2014, 6, 4985. [Google Scholar] [CrossRef]
- Brunetti, G.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Novel micro-nano optoelectronic biosensor for label-free real-time biofilm monitoring. Biosensors 2021, 11, 361. [Google Scholar] [CrossRef]
- Maleki, M.; Mehran, M. Guided-mode resonance sensors: Different schemes for different applications. JOSA B 2022, 39, 1634–1643. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Li, J.; Li, W.; Li, J.; Gu, C.; Li, Z. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Sci. Rep. 2016, 6, 27817. [Google Scholar] [CrossRef]
- Liu, B.; Yao, X.; Zhang, L.; Lin, H.; Chen, S.; Zhong, J.; Ren, B. An efficient platform for flexible engineering of superradiant, fano-type, and subradiant resonances. ACS Photonics 2015, 2, 1725–1731. [Google Scholar] [CrossRef]
- Bakhti, S.; Bonod, N.; Dhuey, S.; Schuck, P.; Destouches, N. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles. Sci. Rep. 2016, 6, 32061. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, L.; Xiong, L.; Qi, J.; Li, B. High q-factor multiple fano resonances for high-sensitivity sensing in all-dielectric metamaterials. OSA Continuum 2019, 2, 2818. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, L.; Xiang, P. Improving the durability of the optical fiber sensor based on strain transfer analysis. Opt. Fiber Technol. 2018, 42, 97–104. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Tang, S.; Cui, H.; Xie, X.; Wu, H.; Liu, X.; Yang, D.; Wang, H.; Xiang, P. Investigations on the shearing performance of ballastless CRTS II slab based on quasi-distributed optical fiber sensing. Opt. Fiber Technol. 2023, 75, 103129. [Google Scholar]
- Wang, H.; Xiang, P.; Jiang, L. Optical fiber sensing technology for full-scale condition monitoring of pavement layers. Road Mater. Pavement Des. 2020, 21, 1258–1273. [Google Scholar] [CrossRef]
- Hu, J.; Liu, X.; Zhao, J.; Zou, J. Investigation of Fano resonance in compound resonant waveguide gratings for optical sensing. Chin. Opt. Lett. 2017, 15, 030502. [Google Scholar]
- Singh, L.; Jain, S.; Kumar, M. Nanophotonic device based on fano resonance in engineered slot waveguide for optical detection of viral infections. IEEE Sens. J. 2021, 21, 2805–2812. [Google Scholar]
- Kilic, S.; Kocaman, S. Highly sensitive and tunable fano-like rod-type silicon photonic crystal refractive index sensor. IEEE Sens. J. 2021, 21, 7551–7557. [Google Scholar] [CrossRef]
- Edwards, D. Silicon (Si). In Handbook of Optical Constants of Solids, 2nd ed.; Palik, E.D., Ed.; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Bi, L.; Fan, X.; Zhao, H.; Liu, L.; Wei, X.; Niu, H.; Li, C.; Bai, C.; Fang, W. Enhanced sensing ability in multiple Fano resonance optical biosensor with high-contrast metastructures. Results Opt. 2022, 9, 100276. [Google Scholar] [CrossRef]
- Fan, S.; Suh, W.; Joannopoulos, J. Temporal coupled-mode theory for the Fano resonance in optical resonators. JOSA A 2003, 20, 569–572. [Google Scholar] [CrossRef]
- Liu, G.; Zhai, X.; Wang, L.; Lin, Q.; Xia, S.; Luo, X.; Zhao, C. A high-performance refractive index sensor based on fano resonance in si split-ring metasurface. Plasmonics 2018, 13, 15–19. [Google Scholar] [CrossRef]
- Yang, Y.; Kravchenko, I.; Briggs, D.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef]
Sensor Type | Sim.: S | FOM | Exp.: S | FOM | Ref. |
---|---|---|---|---|---|
Metal mushroom arrays | n.r. a | n.r. a | 525 nm/RIU | 38 | [1] |
Single-layer guided mode resonance structure | 241.7 nm/RIU | 690 | 229.43 nm/RIU | 31.52 | [11] |
Si split-ring | 452 nm/RIU | 56.5 | n.r. a | n.r. a | [29] |
Silicon rods and rings | n.r. a | n.r. a | 289 nm/RIU | 103 | [30] |
All-dielectric metastructure | 849.3 nm/RIU | 2573.5 | 306 nm/RIU | 124 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, L.; Fan, X.; Cao, S.; Li, C.; Yin, Y.; Zhao, H.; Fang, W.; Niu, H.; Bai, C.; Wei, X.; et al. Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure for High-Contrast Biomedical Applications. Photonics 2023, 10, 616. https://doi.org/10.3390/photonics10060616
Bi L, Fan X, Cao S, Li C, Yin Y, Zhao H, Fang W, Niu H, Bai C, Wei X, et al. Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure for High-Contrast Biomedical Applications. Photonics. 2023; 10(6):616. https://doi.org/10.3390/photonics10060616
Chicago/Turabian StyleBi, Liping, Xinye Fan, Shuangshuang Cao, Chuanchuan Li, Yingxin Yin, Hening Zhao, Wenjing Fang, Huijuan Niu, Chenglin Bai, Xin Wei, and et al. 2023. "Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure for High-Contrast Biomedical Applications" Photonics 10, no. 6: 616. https://doi.org/10.3390/photonics10060616
APA StyleBi, L., Fan, X., Cao, S., Li, C., Yin, Y., Zhao, H., Fang, W., Niu, H., Bai, C., Wei, X., & Kumar, S. (2023). Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure for High-Contrast Biomedical Applications. Photonics, 10(6), 616. https://doi.org/10.3390/photonics10060616