SORS Performance of Sublayer Materials with Different Optical Properties under Diffuse Scattering Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bilayer Sample Preparation
2.2. SORS Instrumentation
2.3. Data Analysis
3. Results and Discussion
3.1. SORS Spectra of Different Materials Covered with Diffuse Tape
3.2. SORS Features Affected by the Thickness of Surficial Barriers
3.3. Ability to Suppress the Interference from Top-Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froud, C.A.; Hayward, I.P.; Laven, J. Advances in the Raman Depth Profiling of Polymer Laminates. Appl. Spectrosc. 2003, 57, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Everall, N.J. Confocal Raman microscopy: Common errors and artefacts. Analyst 2010, 135, 2512. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.D.; Matousek, P.P. Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields. In Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Matousek, P.; Clark, I.P.; Draper, E.R.C.; Morris, M.D.; Goodship, A.E.; Everall, N.; Towrie, M.; Finney, W.F.; Parker, A.W. Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy. Appl. Spectrosc. 2005, 59, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Buckley, K.; Matousek, P. Non-invasive analysis of turbid samples using deep Raman spectroscopy. Analyst 2011, 136, 3039–3050. [Google Scholar] [CrossRef] [PubMed]
- Matousek, P. Deep non-invasive Raman spectroscopy of living tissue and powders. Chem. Soc. Rev. 2007, 36, 1292–1304. [Google Scholar] [CrossRef]
- Matousek, P.; Stone, N. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chem. Soc. Rev. 2015, 47, 1794–1802. [Google Scholar] [CrossRef]
- Esmonde-White, K.A.; Cuellar, M.; Uerpmann, C.; Lenain, B.; Lewis, I.R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 2017, 409, 637–649. [Google Scholar] [CrossRef]
- Olds, W.J.; Jaatinen, E.; Fredericks, P.; Cletus, B.; Panayiotou, H.; Izake, E.L. Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs. Forensic Sci. Int. 2011, 212, 69–77. [Google Scholar] [CrossRef]
- Gupta, N.; Rodriguez, J.D.; Yilmaz, H. Through-Container Quantitative Analysis of Hand Sanitizers Using Spatially Offset Raman Spectroscopy. Commun. Chem. 2021, 4, 126. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S. Investigation of Raman chemical imaging for detection of lycopene changes in tomatoes during postharvest ripening. J. Food Eng. 2011, 107, 277–288. [Google Scholar] [CrossRef]
- Wenyang, Z.; Ji, M.; Da-Wen, S. Raman spectroscopic techniques for detecting structure and quality of frozen foods: Principles and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2623–2639. [Google Scholar]
- Ostovar Pour, S.; Fowler, S.M.; Hopkins, D.L.; Torley, P.; Gill, H.; Blanch, E.W. Differentiating various beef cuts using spatially offset Raman spectroscopy. J. Raman Spectrosc. 2020, 51, 711–716. [Google Scholar] [CrossRef]
- Arroyo-Cerezo, A.; Jimenez-Carvelo, A.M.; González-Casado, A.; Koidis, A.; Cuadros-Rodríguez, L. Deep (offset) non-invasive Raman spectroscopy for the evaluation of food and beverages–A review. LWT-Food Sci. Technol. 2021, 149, 111822. [Google Scholar] [CrossRef]
- Morey, R.; Ermolenkov, A.; Payne, W.Z.; Scheuring, D.C.; Koym, J.W.; Vales, M.I.; Kurouski, D. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy. Anal. Bioanal. Chem. 2020, 412, 4585–4594. [Google Scholar] [CrossRef]
- Realini, M.; Conti, C.; Botteon, A.; Colombo, C.; Matousek, P. Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool. Analyst 2017, 142, 351–355. [Google Scholar] [CrossRef]
- Botteon, A.; Colombo, C.; Realini, M.; Castiglioni, C.; Piccirillo, A.; Matousek, P.; Conti, C. Non-invasive and in situ investigation of layers sequence in panel paintings by portable micro-spatially offset Raman spectroscopy. J. Raman Spectrosc. 2020, 51, 2016–2021. [Google Scholar] [CrossRef]
- Nicolson, F.; Kircher, M.F.; Stone, N.; Matousek, P. Spatially offset Raman spectroscopy for biomedical applications. Chem. Soc. Rev. 2021, 50, 556–568. [Google Scholar] [CrossRef]
- Buckley, K.; Atkins, C.G.; Chen, D.; Schulze, H.G.; Devine, D.V.; Blades, M.W.; Turner, R.F.B. Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags. Analyst 2016, 141, 1678–1685. [Google Scholar] [CrossRef]
- Vardaki, M.Z.; Atkins, C.G.; Schulze, H.G.; Devine, D.V.; Serrano, K.; Blades, M.W.; Turner, R.F.B. Raman spectroscopy of stored red blood cell concentrate within sealed transfusion blood bags. Analyst 2018, 143, 6006–6013. [Google Scholar] [CrossRef]
- Vardaki, M.Z.; Kourkoumelis, N. Tissue phantoms for biomedical applications in Raman spectroscopy: A review. Biomed. Eng. Comput. Biol. 2020, 11, 1179597220948100. [Google Scholar] [CrossRef]
- Vardaki, M.Z.; Schulze, H.G.; Serrano, K.; Blades, M.W.; Devine, D.V.; Turner, R.F. Assessing the quality of stored red blood cells using handheld Spatially Offset Raman spectroscopy with multisource correlation analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 276, 121220. [Google Scholar] [CrossRef] [PubMed]
- Demers, J.L.H.; Esmonde-White, F.W.; Esmonde-White, K.A.; Morris, M.D.; Pogue, B.W. Next-generation Raman tomography instrument for non-invasive in vivo bone imaging. Biomed. Opt. Express 2015, 6, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Ochoa, M.; Maher, J.R.; Awad, H.A.; Berger, A.J. Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue. J. Biophotonics 2017, 10, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Sowoidnich, K.; Churchwell, J.H.; Buckley, K.; Goodship, A.E.; Parker, A.W.; Matousek, P. Photon migration of Raman signal in bone as measured with spatially offset Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 240–247. [Google Scholar] [CrossRef]
- Sowoidnich, K.; Churchwell, J.H.; Buckley, K.; Goodship, A.E.; Parker, A.W.; Matousek, P. Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels. Analyst 2017, 142, 3219–3226. [Google Scholar] [CrossRef]
- Luu, L.; Roman, P.A.; Mathews, S.A.; Ramella-Roman, J.C. Microfluidics based phantoms of superficial vascular network. Biomed. Opt. Express. 2012, 3, 1350–1364. [Google Scholar] [CrossRef]
- Mosca, S.; Conti, C.; Stone, N.; Matousek, P. Spatially offset Raman spectroscopy. Nat. Rev. Methods Prim. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Apip, C.; Martínez, A.; Meléndrez, M.; Domínguez, M.; Marzialetti, T.; Báez, R.; Sánchez-Sanhueza, G.; Jaramillo, A.; Catalán, A. An in vitro study on the inhibition and ultrastructural alterations of Candida albicans biofilm by zinc oxide nanowires in a PMMA matrix. Saudi Dent. J. 2021, 33, 944–953. [Google Scholar] [CrossRef]
- Wang, R.; Tao, J.; Yu, B.; Dai, L. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J. Prosthet. Dent. 2014, 111, 318–326. [Google Scholar] [CrossRef]
- Mihály, J.; Sterkel, S.; Ortner, H.M.; Kocsis, L.; Hajba, L.; Furdyga, É.; Mink, J. FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Chem. Acta 2006, 79, 497–501. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, N.; Zhang, L.; Zhang, X.; Hu, C.; Chen, C. SORS Performance of Sublayer Materials with Different Optical Properties under Diffuse Scattering Media. Photonics 2023, 10, 574. https://doi.org/10.3390/photonics10050574
Yu N, Zhang L, Zhang X, Hu C, Chen C. SORS Performance of Sublayer Materials with Different Optical Properties under Diffuse Scattering Media. Photonics. 2023; 10(5):574. https://doi.org/10.3390/photonics10050574
Chicago/Turabian StyleYu, Nian, Lili Zhang, Xianbiao Zhang, Chunrui Hu, and Chang Chen. 2023. "SORS Performance of Sublayer Materials with Different Optical Properties under Diffuse Scattering Media" Photonics 10, no. 5: 574. https://doi.org/10.3390/photonics10050574
APA StyleYu, N., Zhang, L., Zhang, X., Hu, C., & Chen, C. (2023). SORS Performance of Sublayer Materials with Different Optical Properties under Diffuse Scattering Media. Photonics, 10(5), 574. https://doi.org/10.3390/photonics10050574