Detection of Cutaneous Blood Flow Changes Associated with Diabetic Microangiopathies in Type 2 Diabetes Patients Using Incoherent Optical Fluctuation Flowmetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Perfusion Measurement
- Baseline perfusion levels (BP1, BP2, BP3)—average resting perfusion levels measured by sensors 1, 2, and 3, respectively.
- Post-occlusive reactive hyperaemia levels after 1, 2 and 3 min of cuff pressure release (PORH_1, PORH_2, PORH_3, respectively).
- Maximum PORH level (max_PORH).
- Time to reach max_PORH from pressure release (max_PORH time).
- Local thermal hyperaemia levels after 1–5 min of heating (LTHi_j, where i—sensor number, j—minute number).
- Maximum LTH level (max_LTH2, max_LTH3).
- Time to reach max_PORH from pressure release (max_LTH2 time, max_LTH3 time).
- Parameters from each side of the body were assessed independently.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- American Diabetes Association Standards of Medical Care in Diabetes-2022 Abridged for Primary Care Providers. Clin. Diabetes Publ. Am. Diabetes Assoc. 2022, 40, 10–38. [CrossRef]
- Gudla, S.; Tenneti, D.; Pande, M.; Tipparaju, S.M. Diabetic Retinopathy: Pathogenesis, Treatment, and Complications; Patel, J.K., Sutariya, V., Kanwar, J.R., Pathak, Y.V., Eds.; Springer International Publishing: Cham, Vietnam, 2018; pp. 83–94. [Google Scholar]
- Rosenberry, R.; Nelson, M.D. Reactive Hyperemia: A Review of Methods, Mechanisms, and Considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R605–R618. [Google Scholar] [CrossRef]
- Neubauer-Geryk, J.; Hoffmann, M.; Wielicka, M.; Piec, K.; Kozera, G.; Brzeziński, M.; Bieniaszewski, L. Current Methods for the Assessment of Skin Microcirculation: Part 1. Adv. Dermatol. Allergol. Dermatol. Alergol. 2019, 36, 247–254. [Google Scholar] [CrossRef]
- Neubauer-Geryk, J.; Hoffmann, M.; Wielicka, M.; Piec, K.; Kozera, G.; Bieniaszewski, L. Current Methods for the Assessment of Skin Microcirculation: Part 2. Adv. Dermatol. Allergol. Dermatol. Alergol. 2019, 36, 377–381. [Google Scholar] [CrossRef]
- Fuchs, D.; Dupon, P.P.; Schaap, L.A.; Draijer, R. The Association between Diabetes and Dermal Microvascular Dysfunction Non-Invasively Assessed by Laser Doppler with Local Thermal Hyperemia: A Systematic Review with Meta-Analysis. Cardiovasc. Diabetol. 2017, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-F.; Hsiu, H.; Sung, C.-J.; Lee, C.-H. Combining Laser-Doppler Flowmetry Measurements with Spectral Analysis to Study Different Microcirculatory Effects in Human Prediabetic and Diabetic Subjects. Lasers Med. Sci. 2017, 32, 327–334. [Google Scholar] [CrossRef]
- Mizeva, I.; Zharkikh, E.; Dremin, V.; Zherebtsov, E.; Makovik, I.; Potapova, E.; Dunaev, A. Spectral Analysis of the Blood Flow in the Foot Microvascular Bed during Thermal Testing in Patients with Diabetes Mellitus. Microvasc. Res. 2018, 120, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Sorelli, M.; Francia, P.; Bocchi, L.; De Bellis, A.; Anichini, R. Assessment of Cutaneous Microcirculation by Laser Doppler Flowmetry in Type 1 Diabetes. Microvasc. Res. 2019, 124, 91–96. [Google Scholar] [CrossRef]
- Park, H.S.; Yun, H.M.; Jung, I.M.; Lee, T. Role of Laser Doppler for the Evaluation of Pedal Microcirculatory Function in Diabetic Neuropathy Patients. Microcirculation 2016, 23, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Jan, Y.-K. Nonlinear Dynamics of Skin Blood Flow Response to Mechanical and Thermal Stresses in the Plantar Foot of Diabetics with Peripheral Neuropathy. Clin. Hemorheol. Microcirc. 2017, 66, 197–210. [Google Scholar] [CrossRef]
- Mrowietz, C.; Franke, R.P.; Pindur, G.; Sternitzky, R.; Jung, F.; Wolf, U. Evaluation of Laser-Doppler-Fluxmetry for the Diagnosis of Microcirculatory Disorders. Clin. Hemorheol. Microcirc. 2019, 71, 129–135. [Google Scholar] [CrossRef]
- Tehrani, S.; Bergen, K.; Azizi, L.; Jörneskog, G. Skin Microvascular Reactivity Correlates to Clinical Microangiopathy in Type 1 Diabetes: A Pilot Study. Diab. Vasc. Dis. Res. 2020, 17, 1479164120928303. [Google Scholar] [CrossRef]
- Krasulina, K.A.; Glazkova, P.A.; Glazkov, A.A.; Kulikov, D.A.; Rogatkin, D.A.; Kovaleva, Y.A.; Bardeeva, J.N.; Dreval, A.V. Reduced Microvascular Reactivity in Patients with Diabetic Neuropathy. Clin. Hemorheol. Microcirc. 2021, 79, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.; Roustit, M.; Cracowski, J.-L. Skin Microvascular Endothelial Function as a Biomarker in Cardiovascular Diseases? Pharmacol. Rep. 2015, 67, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Lapitan, D.G.; Raznitsyn, O.A. A Method and a Device Prototype for Noninvasive Measurements of Blood Perfusion in a Tissue. Instrum. Exp. Tech. 2018, 61, 745–750. [Google Scholar] [CrossRef]
- Lapitan, D.; Rogatkin, D. Optical Incoherent Technique for Noninvasive Assessment of Blood Flow in Tissues: Theoretical Model and Experimental Study. J. Biophotonics 2021, 14, e202000459. [Google Scholar] [CrossRef]
- Lapitan, D.G.; Tarasov, A.P.; Rogatkin, D.A. Dependence of the Registered Blood Flow in Incoherent Optical Fluctuation Flowmetry on the Mean Photon Path Length in a Tissue. Photonics 2023, 10, 190. [Google Scholar] [CrossRef]
- Hosmer, D., Jr.; Lemeshow, S.; Sturdivant, R. Assessing the Fit of the Model. In Applied Logistic Regression; John and Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 153–225. ISBN 978-1-118-54838-7. [Google Scholar]
- Zoungas, S.; Arima, H.; Gerstein, H.C.; Holman, R.R.; Woodward, M.; Reaven, P.; Hayward, R.A.; Craven, T.; Coleman, R.L.; Chalmers, J.; et al. Effects of Intensive Glucose Control on Microvascular Outcomes in Patients with Type 2 Diabetes: A Meta-Analysis of Individual Participant Data from Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2017, 5, 431–437. [Google Scholar] [CrossRef]
- Stehouwer, C.D.A. Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle With Widespread Consequences. Diabetes 2018, 67, 1729–1741. [Google Scholar] [CrossRef]
- Biro, K.; Sandor, B.; Kovacs, D.; Csiszar, B.; Vekasi, J.; Totsimon, K.; Toth, A.; Koltai, K.; Endrei, D.; Toth, K.; et al. Lower Limb Ischemia and Microrheological Alterations in Patients with Diabetic Retinopathy. Clin. Hemorheol. Microcirc. 2018, 69, 23–35. [Google Scholar] [CrossRef]
- Holowatz, L.A.; Thompson-Torgerson, C.S.; Kenney, W.L. The Human Cutaneous Circulation as a Model of Generalized Microvascular Function. J. Appl. Physiol. 2008, 105, 370–372. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Shaw, J.E.; Robinson, C.; Kawasaki, R.; Wang, J.J.; Kreis, A.J.; Wong, T.Y. Diabetic Retinopathy Is Related to Both Endothelium-Dependent and -Independent Responses of Skin Microvascular Flow. Diabetes Care 2011, 34, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Kuryliszyn-Moskal, A.; Zarzycki, W.; Dubicki, A.; Moskal, D.; Kosztyła-Hojna, B.; Hryniewicz, A. Clinical Usefulness of Videocapillaroscopy and Selected Endothelial Cell Activation Markers in People with Type 1 Diabetes Mellitus Complicated by Microangiopathy. Adv. Med. Sci. 2017, 62, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Glazkov, A.A.; Krasulina, K.A.; Glazkova, P.A.; Kovaleva, Y.A.; Bardeeva, J.N.; Kulikov, D.A. Skin Microvascular Reactivity in Patients with Diabetic Retinopathy. Microvasc. Res. 2023, 147, 104501. [Google Scholar] [CrossRef] [PubMed]
- Santesson, P.; Lins, P.-E.; Kalani, M.; Adamson, U.; Lelic, I.; von Wendt, G.; Fagrell, B.; Jörneskog, G. Skin Microvascular Function in Patients with Type 1 Diabetes: An Observational Study from the Onset of Diabetes. Diab. Vasc. Dis. Res. 2017, 14, 191–199. [Google Scholar] [CrossRef]
- Adamska, A.; Pilacinski, S.; Zozulinska-Ziolkiewicz, D.; Gandecka, A.; Grzelka, A.; Konwerska, A.; Malinska, A.; Nowicki, M.; Araszkiewicz, A. An Increased Skin Microvessel Density Is Associated with Neurovascular Complications in Type 1 Diabetes Mellitus. Diab. Vasc. Dis. Res. 2019, 16, 513–522. [Google Scholar] [CrossRef]
- Holowatz, L.A.; Thompson-Torgerson, C.; Kenney, W.L. Aging and the control of human skin blood flow. Front. Biosci. 2010, 15, 718–739. [Google Scholar] [CrossRef]
Parameter | Overall, n = 52 1 | Group 1, n = 39 1 | Group 2, n = 13 1 | p-Value |
---|---|---|---|---|
Sex | 0.5 | |||
Female, n (%) | 40 (76.9%) | 31 (79.5%) | 9 (69.2%) | |
Male, n (%) | 12 (23.1%) | 8 (20.5%) | 4 (30.8%) | |
Age, years | 57 (51; 60) | 56 (50; 60) | 58 (57; 64) | 0.12 |
BMI, kg/m2 | 31.5 (28.2; 36.0) | 31.0 (27.8; 35.5) | 32.9 (29.1; 36.8) | 0.3 |
HbA1c, % | 9.03 (8.12; 10.60) | 8.97 (8.23; 10.60) | 9.16 (8.13; 10.12) | >0.9 |
Retinopathy, n (%) | 23 (44.2%) | 10 (25.6%) | 13 (100.0%) | <0.001 |
Nephropathy, n (%) | 30 (57.7%) | 17 (43.6%) | 13 (100.0%) | <0.001 |
Neuropathy, n (%) | 52 (100.0%) | 39 (100.0%) | 13 (100.0%) | |
Arterial hypertension, n (%) | 43 (82.7%) | 30 (76.9%) | 13 (100.0%) | 0.091 |
Coronary heart disease, n (%) | 7 (13.5%) | 4 (10.3%) | 3 (23.1%) | 0.3 |
Myocardial Infarction in anamnesis, n (%) | 2 (3.8%) | 1 (2.6%) | 1 (7.7%) | 0.4 |
Parameter | Group 1, n = 78 1 | Group 2, n = 26 1 | p-Value |
---|---|---|---|
BP1, PU | 17 (13; 24) | 19 (16; 25) | 0.3 |
PORH_1, PU | 20 (16; 28) | 23 (21; 27) | 0.2 |
PORH_2, PU | 20 (16; 27) | 25 (23; 30) | 0.009 |
PORH_3, PU | 19 (15; 24) | 24 (20; 27) | 0.021 |
max_PORH, PU | 24 (20; 31) | 28 (25; 32) | 0.048 |
max_PORH time, s | 58 (34; 91) | 77 (36; 105) | 0.5 |
BP2, PU | 1.24 (0.95; 1.44) | 1.06 (0.87; 1.30) | 0.064 |
LTH2_1, PU | 2.04 (1.74; 2.52) | 1.77 (1.43; 2.05) | 0.011 |
LTH2_2, PU | 3.14 (2.53; 4.06) | 2.89 (1.98; 3.49) | 0.072 |
LTH2_3, PU | 3.34 (2.72; 4.24) | 3.26 (2.20; 3.88) | 0.2 |
LTH2_4, PU | 3.06 (2.53; 3.86) | 2.98 (2.11; 3.81) | 0.4 |
LTH2_5, PU | 2.74 (2.31; 3.72) | 2.63 (1.98; 3.35) | 0.2 |
max_LTH2, PU | 3.73 (2.95; 4.53) | 3.48 (2.38; 4.01) | 0.13 |
max_LTH2 time, s | 126 (115; 142) | 120 (111; 142) | 0.4 |
BP3, PU | 8.6 (6.5; 12.7) | 8.5 (5.3; 12.6) | 0.5 |
LTH3_1, PU | 11.0 (8.6; 13.4) | 10.1 (7.0; 14.1) | 0.5 |
LTH3_2, PU | 15.4 (13.0; 19.0) | 14.7 (11.0; 19.8) | 0.5 |
LTH3_3, PU | 17.0 (13.8; 19.9) | 17.2 (13.5; 20.6) | >0.9 |
LTH3_4, PU | 16.1 (13.5; 19.1) | 16.7 (12.7; 20.4) | 0.7 |
LTH3_5, PU | 14.8 (12.6; 17.0) | 15.1 (11.1; 18.0) | 0.9 |
max_LTH3, PU | 17.7 (15.1; 21.0) | 18.7 (14.7; 22.2) | >0.9 |
max_LTH3 time, s | 134 (111; 154) | 134 (115; 152) | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glazkov, A.; Krasulina, K.; Glazkova, P.; Tarasov, A.; Lapitan, D.; Kovaleva, Y.; Rogatkin, D. Detection of Cutaneous Blood Flow Changes Associated with Diabetic Microangiopathies in Type 2 Diabetes Patients Using Incoherent Optical Fluctuation Flowmetry. Photonics 2023, 10, 442. https://doi.org/10.3390/photonics10040442
Glazkov A, Krasulina K, Glazkova P, Tarasov A, Lapitan D, Kovaleva Y, Rogatkin D. Detection of Cutaneous Blood Flow Changes Associated with Diabetic Microangiopathies in Type 2 Diabetes Patients Using Incoherent Optical Fluctuation Flowmetry. Photonics. 2023; 10(4):442. https://doi.org/10.3390/photonics10040442
Chicago/Turabian StyleGlazkov, Alexey, Ksenia Krasulina, Polina Glazkova, Andrey Tarasov, Denis Lapitan, Yulia Kovaleva, and Dmitry Rogatkin. 2023. "Detection of Cutaneous Blood Flow Changes Associated with Diabetic Microangiopathies in Type 2 Diabetes Patients Using Incoherent Optical Fluctuation Flowmetry" Photonics 10, no. 4: 442. https://doi.org/10.3390/photonics10040442
APA StyleGlazkov, A., Krasulina, K., Glazkova, P., Tarasov, A., Lapitan, D., Kovaleva, Y., & Rogatkin, D. (2023). Detection of Cutaneous Blood Flow Changes Associated with Diabetic Microangiopathies in Type 2 Diabetes Patients Using Incoherent Optical Fluctuation Flowmetry. Photonics, 10(4), 442. https://doi.org/10.3390/photonics10040442