Two-Dimensional Quantum Droplets in Binary Dipolar Bose-Bose Mixture
(This article belongs to the Section Quantum Photonics and Technologies)
Abstract
:1. Introduction
2. Model
3. Stationary Solution of the Quantum Droplets
4. Collision between the Moving Quantum Droplets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donley, E.A.; Claussen, N.R.; Cornish, S.L.; Roberts, J.L.; Cornell, E.A.; Wieman, C.E. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 2001, 412, 295–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malomed, B.A. Multidimensional Solitons: Well-Established Results and Novel Findings. Eur. Phys. J. Spec. Top. 2016, 225, 2507–2532. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 2018, 359, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M. Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Phys. Rev. Lett. 2018, 120, 235301. [Google Scholar] [CrossRef] [Green Version]
- Chomaz, L.; Baier, S.; Petter, D.; Mark, M.J.; Wächtler, F.; Santos, L.; Ferlaino, F. Quantum-Fluctuation-Driven Crossover from a Dilute Bose–Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid. Phys. Rev. X 2016, 6, 041039. [Google Scholar] [CrossRef] [Green Version]
- Cheiney, P.; Cabrera, C.R.; Sanz, J.; Naylor, B.; Tanzi, L.; Tarruell, L. Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates. Phys. Rev. Lett. 2018, 120, 135301. [Google Scholar] [CrossRef] [Green Version]
- Ferioli, G.; Giulia, S.; Masi, L.; Giusti, G.; Modugno, G.; Inguscio, M. Gallemí, A.; Recati, A.; Fattori, M. Collisions of Self-Bound Quantum Droplets. Phys. Rev. Lett. 2019, 122, 090401. [Google Scholar] [CrossRef] [Green Version]
- D’Errico, C.; Burchianti, A.; Prevedelli, M.; Salasnich, L.; Ancilotto, F.; Modugno, M.; Fort, C. Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 2019, 1, 033155. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Kadau, H.; Schmitt, M.; Wenzel, M.; Pfau, T. Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. Phys. Rev. Lett. 2016, 116, 215301. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Wenzel, M.; Schmitt, M.; Böttcher, F.; Pfau, T. Onset of a modulational instability in trapped dipolar Bose–Einstein condensates. Phys. Rev. A 2018, 97, 011604. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Wenze, M.; Bötcher, F.; Langen, T.; Isoard, M.; Stringari, S.; Pfau, T. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms. Phys. Rev. Lett. 2018, 120, 160402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttcher, F.; Wenzel, M.; Schmidt, J.N.; Guo, M.; Langen, T.; Ferrier-Barbut, I.; Mazzanti, F. Dilute dipolar quantum droplets beyond the extended Gross–Pitaevskii equation. Phys. Rev. Res. 2019, 1, 033088. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.; Wenzel, M.; Böttcher, F.; Ferrier-Barbut, I.; Pfau, T. Self-Bound Droplets of a Dilute Magnetic Quantum Liquid. Nature 2016, 539, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Schmitt, M.; Wenzel, M.; Kadau, H.; Pfau, T. Liquid quantum droplets of ultracold magnetic atoms. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 214004. [Google Scholar] [CrossRef] [Green Version]
- Kadau, H.; Schmitt, M.; Wenzel, M.; Wink, C.; Maier, T.; Ferrier-Barbut, I.; Pfau, T. Observing the Rosensweig Instability of a Quantum Ferrofluid. Nature 2016, 530, 194–197. [Google Scholar] [CrossRef] [Green Version]
- Malomed, B.A. The Family of Quantum Droplets Keeps Expanding. Front. Phys. 2021, 16, 22504. [Google Scholar] [CrossRef]
- Guo, M.Y.; Pfau, T. A New State of Matter of Quantum Droplets. Front. Phys. 2021, 16, 32202. [Google Scholar] [CrossRef]
- Otajonov, S.R.; Otajonov, E.N.; Abdullaev, F.K. Modulational instability and quantum droplets in a two-dimensional Bose–Einstein condensate. Phys. Rev. A 2022, 106, 033309. [Google Scholar] [CrossRef]
- Böttcher, F.; Schmidt, J.N.; Hertkorn, J.; Ng, K.S.H.; Graham, S.D.; Guo, M.Y.; Langen, T.; Pfau, T. New States of Matter with Fine-Tuned Interactions: Quantum Droplets and Dipolar Supersolids. Rep. Prog. Phys. 2021, 84, 012403. [Google Scholar] [CrossRef]
- d’Errico, C.; Zaccanti, M.; Fattori, M.; Roati, G.; Inguscio, M.; Modugno, G.; Simoni, A. Feshbach resonances in ultracold 39K. New J. Phys. 2007, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.S.; Astrakharchik, G.E. Ultradilute Low-Dimensional Liquids. Phys. Rev. Lett. 2016, 117, 100401. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Y.; Chen, S.T.; Huang, Z.P.; Dai, S.X.; Liu, B.; Li, Y.Y.; Wang, S.R. Quantum Droplets in Two-Dimensional Optical Lattices. Front. Phys. 2021, 16, 22501. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Malomed, B.A.; Torner, L. Structured heterosymmetric quantum droplets. Phys. Rev. Res. 2020, 2, 033522. [Google Scholar] [CrossRef]
- Otajonov, S.R.; Tsoy, E.N.; Abdullaev, F.K. Variational approximation for two-dimensional quantum droplets. Phys. Rev. E 2020, 102, 062217. [Google Scholar] [CrossRef]
- Boudjemâa, A. Fluctuations and quantum self-bound droplets in a dipolar Bose-Bose mixture. Phys. Rev. A 2018, 98, 033612. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Qi, W.; Peng, P.; Wang, L.; Zhou, H.; Huang, C. Multi-stable quantum droplets in optical lattice. Nonlinear Dyn. 2020, 102, 303. [Google Scholar] [CrossRef]
- Morera, I.; Astrakharchik, G.E.; Polls, A.; Juliá-Díaz, B. Quantum droplets of bosonic mixtures in a one-dimensional optical lattice. Phys. Rev. Res. 2020, 2, 022008. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, H.; Zhong, R.; Zhang, X.; Qin, X.; Huang, C.; Li, Y.; Malomed, B.A. Symmetry breaking of quantum droplets in a dual-core trap. Phys. Rev. A 2019, 99, 053602. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cai, X.; Liu, B.; Jiang, X.; Li, Y. Hidden vortices of quantum droplets in quasi-two dimensional space. Acta Phys. Sin. 2022, 71, 200302. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Y.; Yang, A.W.; Cai, X.Y.; Liu, Y.; Luo, Z.H.; Qin, X.Z.; Jiang, X.D.; Li, Y.Y.; Malomed, B.A. Vortex-ring quantum droplets in a radially-periodic potential. New J. Phys. 2022, 24, 123026. [Google Scholar] [CrossRef]
- Dong, L.; Kartashov, Y.V. Rotating Multidimensional Quantum Droplets. Phys. Rev. Lett. 2021, 126, 244101. [Google Scholar] [CrossRef]
- Huang, H.; Wang, H.; Chen, M.; Lim, C.; Wong, K. Binary-vortex quantum droplets. Chaos Solitons Fractals 2022, 158, 112079. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, Y.; Ye, F.; Chen, H.; Tang, S.; Deng, H.; Zhong, H. Self-bound states induced by the Lee-Huang-Yang effect in non-PT-symmetric complex potentials. Nonlinear Dyn. 2022, 110, 3769. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, Y.; Tang, S.; Deng, H.; Wang, H.; He, X.; Zhong, H. Controllable dissipative quantum droplets in one-dimensional optical lattices. Chaos Solitons Fractals 2021, 150, 111193. [Google Scholar] [CrossRef]
- Dong, L.W.; Liu, D.S.; Du, Z.J.; Shi, K.; Qi, W. Bistable multipole quantum droplets in binary Bose–Einstein condensates. Phys. Rev. A 2022, 105, 033321. [Google Scholar] [CrossRef]
- Dong, L.W.; Shi, K.; Huang, C.M. Internal modes of two-dimensional quantum droplets. Phys. Rev. A 2022, 106, 053303. [Google Scholar] [CrossRef]
- Xu, S.; Lei, Y.; Du, J.; Zhao, Y.; Hua, R.; Zeng, J. Three-dimensional quantum droplets in spin–orbit-coupled Bose–Einstein condensates. Chaos Solitons Fractals 2022, 164, 112665. [Google Scholar] [CrossRef]
- Li, Y.Y.; Luo, Z.H.; Liu, Y.; Chen, Z.P.; Huang, C.Q.; Fu, S.H.; Tan, H.S.; Malomed, B.A. Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin–orbit-coupled condensates. New J. Phys. 2017, 19, 113043. [Google Scholar] [CrossRef] [Green Version]
- Cui, X. Spin-orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures. Phys. Rev. A 2018, 98, 023630. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Guo, L.; Yi, S.; Shi, T. Theory for self-bound states of dipolar Bose–Einstein condensates. Phys. Rev. Res. 2020, 2, 043074. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Liu, X.J. Thermal destabilization of self-bound ultradilute quantum droplets. New J. Phys. 2020, 22, 103044. [Google Scholar] [CrossRef]
- Guo, Z.; Jia, F.; Li, L.; Ma, Y.; Hutson, J.; Cui, X.; Wang, D. Lee-Huang-Yang effects in the ultracold mixture of 23Na and 87Rb with attractive interspecies interactions. Phys. Rev. Res. 2021, 3, 033247. [Google Scholar] [CrossRef]
- Guebli, N.; Boudjemâa, A. Quantum self-bound droplets in Bose-Bose mixtures: Effects of higher-order quantum and thermal fluctuations. Phys. Rev. A 2021, 104, 023310. [Google Scholar] [CrossRef]
- Boudjemâa, A. Many-body and temperature effects in two-dimensional quantum droplets in Bose-Bose mixtures. Sci. Rep. 2021, 11, 21765. [Google Scholar] [CrossRef]
- Jiang, X.; Zeng, Y.; Ji, Y.; Liu, B.; Qin, X.; Li, Y. Vortex formation and quench dynamics of rotating quantum droplets. Chaos Solitons Fractals 2022, 161, 112368. [Google Scholar] [CrossRef]
- Wächtler, F.; Santos, L. Quantum filaments in dipolar Bose–Einstein condensates. Phys. Rev. A 2016, 93, 061603(R). [Google Scholar] [CrossRef] [Green Version]
- Wächtler, F.; Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates. Phys. Rev. A 2016, 94, 043618. [Google Scholar] [CrossRef] [Green Version]
- Sekino, Y.; Nishida, Y. Quantum droplet of one-dimensional bosons with a three-body attraction. Phys. Rev. A 2018, 97, 011602(R). [Google Scholar] [CrossRef] [Green Version]
- Bisset, R.N.; Wilson, R.M.; Baillie, D.; Blakie, P.B. Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 2016, 94, 033619. [Google Scholar] [CrossRef] [Green Version]
- Cidrim, A.; dos Santos, F.E.A.; Henn, E.A.L.; Macrì, T. Vortices in self-bound dipolar droplets. Phys. Rev. A 2018, 98, 023618. [Google Scholar] [CrossRef] [Green Version]
- Baillie, D.; Wilson, R.M.; Bisset, R.N.; Blakie, P.B. Self-bound dipolar droplet: A localized matter wave in free space. Phys. Rev. A 2016, 94, 021602(R). [Google Scholar] [CrossRef] [Green Version]
- Boudjemâa, A. Two-Dimensional Quantum Droplets in Dipolar Bose Gases. New J. Phys. 2019, 21, 093027. [Google Scholar] [CrossRef]
- Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose–Einstein Condensates. Phys. Rev. Lett. 2017, 119, 050403. [Google Scholar] [CrossRef] [Green Version]
- Bland, T.; Poli, E.; Ardila, L.A.P.; Santos, L.; Ferlaino, F.; Bisset, R.N. Alternating-domain supersolids in binary dipolar condensates. Phys. Rev. A 2022, 106, 053322. [Google Scholar] [CrossRef]
- Bisset, R.N.; Ardila, L.A.P.; Santos, L. Quantum Droplets of Dipolar Mixtures. Phys. Rev. Lett. 2021, 126, 025301. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Baillie, D.; Blakie, P.B. Quantum Droplet States of a Binary Magnetic Gas. Phys. Rev. Lett. 2021, 126, 025302. [Google Scholar] [CrossRef]
- Scheiermann, D.; Ardila, L.A.P.; Bland, T.; Bisset, R.N.; Santos, L. Catalyzation of supersolidity in binary dipolar condensates. arXiv 2022, arXiv:2202.08259. [Google Scholar] [CrossRef]
- Tikhonenkov, I.; Malomed, B.A.; Vardi, A. Anisotropic solitons in dipolar Bose–Einstein Condensates. Phys. Rev. Lett. 2008, 100, 090406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.L.; Jiang, X.D.; Liu, B.; Chen, Z.P.; Malomed, B.A.; Li, Y.Y. Anisotropic vortex quantum droplets in dipolar Bose–Einstein condensates. arXiv 2023, arXiv:2301.04305. [Google Scholar]
- Giovanazzi, S.; Görlitz, A.; Pfau, T. Tuning the Dipolar Interaction in Quantum Gases. Phys. Rev. Lett. 2002, 89, 130401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roati, G.; Zaccanti, M.; D’Errico, C.; Catani, J.; Modugno, M.; Simoni, A.; Inguscio, M.; Modugno, G. 39K Bose–Einstein condensate with tunable interactions. Phys. Rev. Lett. 2007, 99, 010403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhonenkov, I.; Malomed, B.A.; Vardi, A. Vortex Solitons in Dipolar Bose–Einstein Condensates. Phys. Rev. A 2008, 78, 043614. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Santos, L. Cold Dipolar Gases in Quasi-One-Dimensional Geometries. Phys. Rev. Lett. 2007, 99, 140406. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, J.; Malomed, B.A.; Kevrekidis, P.G.; Frantzeskakis, D.J. Solitons in quasi-one-dimensional Bose–Einstein condensates with competing dipolar and local interactions. Phys. Rev. A 2009, 79, 053608. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.Q.; Lyu, L.; Huang, H.; Chen, Z.P.; Fu, S.H.; Tan, H.S.; Malomed, B.A.; Li, Y.Y. Dipolar bright solitons and solitary vortices in a radial lattice. Phys. Rev. A 2017, 96, 053617. [Google Scholar] [CrossRef] [Green Version]
- Ramachandhran, B.; Opanchuk, B.; Liu, X.J.; Pu, H.; Drummond, P.D.; Hu, H. Half-quantum vortex state in a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. A 2021, 85, 023606. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Pang, W.; Malomed, B.A. Matter-wave solitons supported by field-induced dipole-dipole repulsion with spatially modulated strength. Phys. Rev. A 2013, 88, 053630. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, Y.; Fan, Z.; Pang, W.; Fu, S.; Malomed, B.A. Two-dimensional dipolar gap solitons in free space with spin–Orbit coupling. Phys. Rev. A 2017, 95, 063613. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Ye, Y.; Liu, S.; He, H.; Pang, W.; Malomed, B.A.; Li, Y. Excited states of two-dimensional solitons supported by spin–orbit coupling and field-induced dipole-dipole repulsion. Phys. Rev. A 2018, 97, 013636. [Google Scholar] [CrossRef] [Green Version]
- Chiofalo, L.M.; Succi, S.; Tosi, P.M. Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E 2000, 62, 7438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Lakoba, T.I. Accelerated Imaginary-time Evolution Methods for the Computation of Solitary Waves. Stud. Appl. Math. 2008, 120, 265–292. [Google Scholar] [CrossRef] [Green Version]
- Vakhitov, N.G.; Kolokolov, A.A. Stationary solutions of the wave equation in the medium with nonlinearity saturation. Radiophys. Quantum Electron. 1973, 16, 783–789. [Google Scholar] [CrossRef]
- Hu, Y.M.; Fei, Y.F.; Chen, X.L.; Zhang, Y.B. Collisional Dynamics of Symmetric Two-Dimensional Quantum Droplets. Front. Phys. 2022, 17, 61505. [Google Scholar] [CrossRef]
- Luo, Z.H.; Pang, W.; Liu, B.; Li, Y.Y.; Malomed, B.A. A new form of liquid matter: Quantum droplets. Front. Phys. 2021, 16, 32201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Li, G.; Jiang, X.; Fan, Z.; Chen, Z.; Liu, B.; Li, Y. Two-Dimensional Quantum Droplets in Binary Dipolar Bose-Bose Mixture. Photonics 2023, 10, 405. https://doi.org/10.3390/photonics10040405
Yang A, Li G, Jiang X, Fan Z, Chen Z, Liu B, Li Y. Two-Dimensional Quantum Droplets in Binary Dipolar Bose-Bose Mixture. Photonics. 2023; 10(4):405. https://doi.org/10.3390/photonics10040405
Chicago/Turabian StyleYang, Aowei, Guilong Li, Xunda Jiang, Zhiwei Fan, Zhaopin Chen, Bin Liu, and Yongyao Li. 2023. "Two-Dimensional Quantum Droplets in Binary Dipolar Bose-Bose Mixture" Photonics 10, no. 4: 405. https://doi.org/10.3390/photonics10040405
APA StyleYang, A., Li, G., Jiang, X., Fan, Z., Chen, Z., Liu, B., & Li, Y. (2023). Two-Dimensional Quantum Droplets in Binary Dipolar Bose-Bose Mixture. Photonics, 10(4), 405. https://doi.org/10.3390/photonics10040405