Optical Temperature Sensors Based on Down-Conversion Nd3+,Yb3+:LiYF4 Microparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, T.; Li, Y.; Guo, S.; Peng, D.; Zhao, X.; Liu, Y. Pressure effect on phosphor thermometry using Mg4FGeO6: Mn. Meas. Sci. Technol. 2019, 30, 027001. [Google Scholar] [CrossRef]
- Brites, C.D.; Balabhadra, S.; Carlos, L.D. Lanthanide-based thermometers: At the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 2019, 7, 1801239. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wang, D.; Yang, Z. Upconversion luminescence and optical thermometry based on non-thermally-coupled levels of Ca9Y (PO4)7: Tm3+, Yb3+ phosphor. Opt. Mater. 2022, 126, 112167. [Google Scholar] [CrossRef]
- Khadiev, A.R.; Korableva, S.L.; Ginkel, A.K.; Morozov, O.A.; Nizamutdinov, A.S.; Semashko, V.V.; Pudovkin, M.S. Down-conversion based Tm3+: LiY1-XYbXF4 temperature sensors. Opt. Mater. 2022, 134, 113118. [Google Scholar] [CrossRef]
- Maijer, J.M.; Aarts, L.; Ende, B.M.V.; Vlugt, T.J.H.; Maeijerink, A. Down conversion for solar cells in YF3: Nd3+, Yb3+. Phys. Rev. B 2010, 81, 035107–035116. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Y.; Cao, C.; Xia, Z.; Du, H. Near-infrared luminescence and quantum cutting mechanism in CaWO4: Nd3+, Yb3+. Appl. Phys. B 2013, 111, 367–371. [Google Scholar] [CrossRef]
- Costa, F.B.; Yukimitu, K.; Nunes, L.A.D.O.; Figueiredo, M.D.S.; Silva, J.R.; Andrade, L.H.D.C.; Lima, S.M.; Moraes, J.C.S. High Nd3+→Yb3+ energy transfer efficiency in tungsten-tellurite glass: A promising converter for solar cells. J. Am. Ceram. Soc. 2017, 100, 1956–1962. [Google Scholar] [CrossRef]
- Gomes, L.; Courrol, L.C.; Tarelho, L.V.G.; Ranieri, I.M. Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals. Phys. Rev. B 1996, 54, 3825. [Google Scholar] [CrossRef]
- Hegarty, J.; Huber, D.L.; Yen, W.M. Fluorescence quenching by cross relaxation in LaF3: Pr3+. Phys. Rev. B 1982, 25, 5638. [Google Scholar] [CrossRef]
- Van Wijngaarden, J.T.; Scheidelaar, S.; Vlugt, T.J.H.; Reid, M.F.; Meijerink, A. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple. Phys. Rev. B 2010, 81, 155112. [Google Scholar] [CrossRef]
- Miller, S.A.; Rast, H.E.; Caspers, H.H. Lattice vibrations of LiYF4. J. Chem. Phys. 1970, 52, 4172–4175. [Google Scholar] [CrossRef]
- Semashko, V.V.; Korableva, S.L.; Fedorov, P.P. Lithium Rare-Earth Fluorides as Photonic Materials: 2. Some Physical, Spectroscopic, and Lasing Characteristics. Inorg. Mater. 2022, 58, 447–492. [Google Scholar] [CrossRef]
- Charfi, B.; Damak, K.; Alqahtani, M.S.; Hussein, K.I.; Alshehri, A.M.; Elkhoshkhany, N.; Assiri, A.L.; Alshehri, K.F.; Reben, M.; Yousef, E.S. Luminescence and Gamma Spectroscopy of Phosphate Glass Doped with Nd3+/Yb3+ and Their Multifunctional Applications. Photonics 2022, 9, 406. [Google Scholar] [CrossRef]
- Fedorov, P.P.; Semashko, V.V.; Korableva, S.L. Lithium rare-earth fluorides as photonic materials: 1. Physicochemical characterization. Inorg. Mater. 2022, 58, 223–245. [Google Scholar] [CrossRef]
- Pudovkin, M.S.; Ginkel, A.K.; Lukinova, E.V. Temperature sensitivity of Nd3+, Yb3+: YF3 ratiometric luminescent thermometers at different Yb3+ concentration. Opt. Mater. 2021, 119, 111328. [Google Scholar] [CrossRef]
- Marciniak, L.; Bednarkiewicz, A.; Trejgis, K.; Maciejewska, K.; Elzbieciak, K.; Ledwa, K. Enhancing the sensitivity of a Nd3+, Yb3+: YVO4 nanocrystalline luminescent thermometer by host sensitization. Phys. Chem. Chem. Phys. 2019, 21, 10532–10539. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Bu, Y.; Liu, C.S.; Liu, T.; Yan, X. Optical temperature sensing of rare-earth ion doped phosphors. Rsc Adv. 2015, 5, 86219–86236. [Google Scholar] [CrossRef]
- Bednarkiewicz, A.; Stefanski, M.; Tomala, R.; Hreniak, D.; Strek, W. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd3+ to Yb3+ energy transfer. Phys. Chem. Chem. Phys. 2015, 17, 24315–24321. [Google Scholar]
- Pudovkin, M.S.; Ginkel, A.K.; Morozov, O.A.; Kiiamov, A.G.; Kuznetsov, M.D. Highly-sensitive lifetime optical thermometers based on Nd3+, Yb3+: YF3 phosphors. J. Lumin. 2022, 249, 119037. [Google Scholar] [CrossRef]
- Santos, H.D.A.; Novais, S.M.V.; Jacinto, C. Optimizing the Nd: YF3 phosphor by impurities control in the synthesis procedure. J. Lumin. 2018, 201, 156–162. [Google Scholar] [CrossRef]
- Pudovkin, M.S.; Korableva, S.L.; Koryakovtseva, D.A.; Lukinova, E.V.; Lovchev, A.V.; Morozov, O.A.; Semashko, V.V. The comparison of Pr3+: LaF3 and Pr3+: LiYF4 luminescent nano-and microthermometer performances. J. Nanoparticle Res. 2019, 21, 266. [Google Scholar] [CrossRef]
- Hu, J.; Xia, H.; Hu, H.; Zhang, Y.; Jiang, H.; Chen, B. Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals. J. Appl. Phys. 2012, 112, 073518. [Google Scholar] [CrossRef]
- Bian, X.; Shi, Q.; Wang, L.; Tian, Y.; Xu, B.; Mamytbekov, Z.K.; Huang, P. Near-infrared luminescence and energy transfer mechanism in K2YF5: Nd3+, Yb3+. Mater. Res. Bull. 2019, 110, 102–106. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, H.; Zhang, L.; Luo, Y.; Pan, G.H.; Wang, X.J.; Hao, Z.; Zhang, J. Determination of cross-relaxation efficiency based on spectroscopy in thulium-doped rare-earth sesquioxides. Ceram. Int. 2023, 49, 11060–11066. [Google Scholar] [CrossRef]
- Ximendes, E.C.; Santos, W.Q.; Rocha, U.; Kagola, U.K.; Sanz-Rodríguez, F.; Fernández, N.; Gouveia-Neto, A.D.S.; Bravo, D.; Domingo, A.M.; Rosal, B.D.; et al. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 2016, 16, 1695–1703. [Google Scholar] [CrossRef]
- Berdowski, P.A.M.; Lammers, M.J.J.; Blasse, G. 5D3-5D4 cross-relaxation of Tb3+ in α-GdOF. Chem. Phys. Lett. 1985, 113, 387–390. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Zhang, Y.; Li, Y.; Yao, X. Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress. J. Alloy. Compd. 2020, 817, 152691. [Google Scholar] [CrossRef]
- Cadiau, A.; Brites, C.D.; Costa, P.M.; Ferreira, R.A.; Rocha, J.; Carlos, L.D. Ratiometric nanothermometer based on an emissive Ln3+-organic framework. ACS Nano 2013, 7, 7213–7218. [Google Scholar] [CrossRef] [PubMed]
- Matuszewska, C.; Elzbieciak-Piecka, K.; Marciniak, L. Transition metal ion-based nanocrystalline luminescent thermometry in SrTiO3: Ni2+, Er3+ nanocrystals operating in the second optical window of biological tissues. J. Phys. Chem. C 2019, 123, 18646–18653. [Google Scholar] [CrossRef]
- Gharouel, S.; Labrador-Páez, L.; Haro-González, P.; Horchani-Naifer, K.; Férid, M. Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing. J. Lumin. 2018, 201, 372–383. [Google Scholar] [CrossRef]
- Rocha, U.; Upendra Kumar, K.; Jacinto, C.; Ramiro, J.; Caamano, A.J.; Garcia Sole, J.; Jaque, D. Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents. Appl. Phys. Lett. 2014, 104, 053703. [Google Scholar] [CrossRef]
- Trannoy, V.; Carneiro Neto, A.N.; Brites, C.D.; Carlos, L.D.; Serier-Brault, H. Engineering of mixed Eu3+/Tb3+ metal-organic frameworks luminescent thermometers with tunable sensitivity. Adv. Opt. Mater. 2021, 9, 2001938. [Google Scholar] [CrossRef]
- Pudovkin, M.; Oleynikova, E.; Kiiamov, A.; Cherosov, M.; Gafurov, M. Nd3+, Yb3+: YF3 Optical Temperature Nanosensors Operating in the Biological Windows. Materials 2022, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Cui, F.; Guo, W.; Ye, R.; Lei, L. Nd3+-sensitized NIR downshifting emission in NaYbF4: Nd@NaYF4: Nd nanoparticles for deep tissue temperature sensing. Opt. Mater. 2022, 124, 112016. [Google Scholar] [CrossRef]
Sample | Transitions, Detected Wavelengths, and Conditions of the Excitation | Maximum Sa [K−1] | Maximum Sr [%/K] | T,K | Ref. |
---|---|---|---|---|---|
Tb0.99Eu0.01(BDC)1.5(H2O)2 | Eu3+ (5D0–7F2), Tb3+ (5D4–7F5) λex = 320 nm | - | 0.14 | 283–333 | [28] |
LiYF4: Nd3+, Yb3+ | Nd3+ (4F3/2–4I9/2), Yb3+ (4F5/2–2F7/2), λex = 520 nm | 0.007 | 1.03 | 240–320 | This work |
SrTiO3:Ni2+,Er3+ | Er3+ (4I13/2 → 4I15/2) Ni2+ (3T2g(F)→ 3A2g(F)), λex = 375 nm | - | 0.76 | 303 | [29] |
YVO4:Nd3+ | Nd3+ (4F3/2–4I11/2) λex = 808 nm | - | 0.46 | 323 | [16] |
PrP5O14 | Pr3+ (3P0 → 1D2) λex = 488 nm | - | 0.46 | 363 | [30] |
NaPr(PO3)4 | Pr3+ (3P0 –3H6) λex = 488 nm | 0.0043 | - | 300–365 | [30] |
LaF3:Nd3+ | Nd3+ (4F3/2 -4I9/2) λex = 808 nm | - | 0.1 | 293 | [31] |
MOF: Eu3+/Tb3+ | Tb3+ (5D4→ 7F5) and Eu3+ (5D0→ 7F2) λex = 340 nm | - | 0.57 | 150–300 | [32] |
YF3: Nd3+, Yb3+ | Nd3+ (4F5/2–4I11/2) λex = 790 nm | 0.64 | 0.92 | 100 | [33] |
NaYbF4: Nd@NaYF4: Nd | Nd3+ (4F5/2–4I11/2) λex = 790 nm | 0.7 | 300 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginkel, A.; Pudovkin, M.; Oleynikova, E.; Korableva, S.; Morozov, O. Optical Temperature Sensors Based on Down-Conversion Nd3+,Yb3+:LiYF4 Microparticles. Photonics 2023, 10, 375. https://doi.org/10.3390/photonics10040375
Ginkel A, Pudovkin M, Oleynikova E, Korableva S, Morozov O. Optical Temperature Sensors Based on Down-Conversion Nd3+,Yb3+:LiYF4 Microparticles. Photonics. 2023; 10(4):375. https://doi.org/10.3390/photonics10040375
Chicago/Turabian StyleGinkel, Anna, Maksim Pudovkin, Ekaterina Oleynikova, Slella Korableva, and Oleg Morozov. 2023. "Optical Temperature Sensors Based on Down-Conversion Nd3+,Yb3+:LiYF4 Microparticles" Photonics 10, no. 4: 375. https://doi.org/10.3390/photonics10040375
APA StyleGinkel, A., Pudovkin, M., Oleynikova, E., Korableva, S., & Morozov, O. (2023). Optical Temperature Sensors Based on Down-Conversion Nd3+,Yb3+:LiYF4 Microparticles. Photonics, 10(4), 375. https://doi.org/10.3390/photonics10040375