Analysis of Compounding and Broadband Extinction Properties of Novel Bioaerosols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Prepared
2.2. Principle
2.2.1. Rayleigh Scattering and Mie Scattering
2.2.2. Complex Refractive Index
2.2.3. Transmittance and Mass Extinction Coefficient
2.3. Methods
2.3.1. Static Testing
2.3.2. Dynamic Testing
3. Results and Discussions
3.1. Analysis of Complex Refractive Index
3.1.1. Reflectivity
3.1.2. The Real Part n(λ)
3.1.3. The Imaginary Part k(λ)
3.2. Analysis of Transmittance
3.2.1. The Transmittance of Single-Germplasm Aerosols
3.2.2. The Transmittance of Compound Aerosols
3.3. Analysis of Mass Extinction Coefficients
3.4. Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Wang, L.; Qi, W.; Liu, Y.; Lin, J. Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms. Micromachines 2021, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Després, V.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef] [Green Version]
- Mirskaya, E.; Agranovski, I.E. Sources and mechanisms of bioaerosol generation in occupational environments. Crit. Rev. Microbiol. 2018, 44, 739–758. [Google Scholar] [CrossRef] [PubMed]
- Gormley, M.; Aspray, T.J.; Kelly, D.A. Aerosol and bioaerosol particle size and dynamics from defective sanitary plumbing systems. Indoor Air 2021, 31, 1427–1440. [Google Scholar] [CrossRef]
- Mbareche, H.; Morawska, L.; Duchaine, C. On the interpretation of bioaerosol exposure measurements and impacts on health. J. Air Waste Manag. Assoc. 2019, 69, 789–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, D.L.; Álvarez, A.S.; Flores, I.I.; Canche, B.C.; Pech, M.C.; Chiu, J.F.; Delgado, M.R. Early detection of the fungal banana black sigatoka pathogen pseudocercospora fijiensis by an SPR immunosensor method. Sensors 2019, 19, 465. [Google Scholar] [CrossRef] [Green Version]
- Jiao, K.; Sun, W.; Zhan, S.S. Sensitive detection of a plant virus by electrochemical enzyme-linked immunoassay. Fresenius J. Anal. Chem. 2000, 367, 667–671. [Google Scholar] [CrossRef]
- Jarocka, U.; Wasowicz, M.; Radecka, H.; Malinowski, T.; Michalczuk, L.; Radecki, J. Impedimetric immunosensor for detection of Plum Pox Virus in plant extracts. Electroanalysis 2011, 23, 2197–2204. [Google Scholar] [CrossRef]
- Kumar, S.; Zhu, G.; Singh, R.; Wang, Q.-L.; Zhang, B.-Y.; Cheng, S.; Liu, F.-Z.; Marques, C.; Kaushik, B.-K.; Jha, R. MoS2 Functionalized Multicore Fiber Probes for Selective Detection of Shigella Bacteria based on Localized Plasmon. J. Light. Technol. 2021, 39, 4069–4081. [Google Scholar] [CrossRef]
- Kaushik, S.; Tiwari, U.K.; Pal, S.S.; Sinha, R.K. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide(MoS2) nanosheets. Biosens. Bioelectron. 2019, 126, 501–509. [Google Scholar] [CrossRef]
- Elder, A.; Paterson, C. Sharps injuries in UK health care: A review of injury rates, viral transmission and potential efficacy of safety devices. Occup. Med. 2006, 56, 566–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenarkoohi, A.; Noorimotlagh, Z.; Falahi, S.; Amarloei, A.; Mirzaee, S.A.; Pakzad, I.; Bastani, E. Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus. Sci. Total Environ. 2020, 748, 141324. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, J.; Wang, D.; Deng, J.; He, K.; Hao, J. Transmission of Coronavirus via Aerosols and Influence of Environmental Conditions on Its Transmission. Environ. Sci. 2021, 42, 3091–3098. [Google Scholar]
- Wilson, N.M.; Norton, A.; Young, F.P.; Collins, D.W. Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: A narrative review. Anaesthesia 2020, 75, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, T.; Tang, H.; Jiang, J.; Fu, Y. Technologies for microbial aerosol sampling and identification: A review and current perspective. Acta Microbiol. Sin. 2022, 62, 1345–1361. [Google Scholar]
- Kaliszewski, M.; Trafny, E.A.; Lewandowski, R.; Włodarski, M.; Bombalska, A.; Kopczyński, K.; Antos-Bielska, M.; Szpakowska, M.; Młyńczak, J.; Mularczyk-Oliwa, M.; et al. A new approach to UVAPS data analysis towards detection of biological aerosol. J. Aerosol Sci. 2013, 58, 148–157. [Google Scholar] [CrossRef]
- Taketani, F.; Kanaya, Y.; Nakamura, T.; Koizumi, K.; Moteki, N.; Takegawa, N. Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique. J. Aerosol Sci. 2013, 58, 1–8. [Google Scholar] [CrossRef]
- Agustin, I.; Avishai, B.; Richader, G. Estimating the limit of bio-aerosol detection with passive infrared spectroscopy. Int. J. High Speed Electron. Syst. 2008, 18, 701–711. [Google Scholar]
- Feng, M.-C.; Xu, L.; Gao, M.-G.; Jiao, Y.; Wei, X.-L.; Jin, L.; Cheng, S.-Y.; Li, X.-X.; Feng, S.-X. Optical properties research of Bacillus subtilis spores by Fourier transform infrared spectroscopy. Spectrosc. Spectr. Anaysis 2012, 32, 3193–3196. [Google Scholar]
- Tiange, L.; Wei, X.; Yonghua, F.; Dacheng, L.; Yueming, Y. Study on Passive Detection of Biological Aerosol with Fourier-Transform Infrared Spectroscopic Technique. Acta Opt. Sin. 2010, 30, 1656–1661. [Google Scholar] [CrossRef]
- Yabushita, S.; Wada, K.; Takai, T.; Inagaki, T.; Young, D.; Arakawa, E.T. A spectroscopic study of the microorganism model of interstellar grains. Astrophys. Space Sci. 1986, 124, 377–388. [Google Scholar] [CrossRef]
- Gurton, K.P.; Ligon, D.; Kvavilashvili, R. Measured Infrared Spectral Extinction for Aerosolized Bacillus subtilis var. niger Endospores from 3 to 13 mum. Appl. Opt. 2001, 40, 4443–4448. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.-J.; Hu, Y.-H.; Wang, Y.; Li, L.; Li, L. Sub-microstructures’ Influences on Cell′s Scattering Prosperities. Acta Photonica Sin. 2013, 42, 710–714. [Google Scholar]
- Li, L.; Hu, Y.; Gu, Y.; Chen, W. Infrared extinction performance of Aspergillus niger spores. Infrared Laser Eng. 2014, 43, 2175–2179. [Google Scholar]
- Li, L.; Hu, Y.-H.; Gu, Y.-L.; Chen, W.; Zhao, Y.-Z.; Chen, S.-J. Measurement and analysis on complex refraction indices of pear pollen in infrared band. Spectrosc. Spectr. Anaysis 2015, 35, 89–92. [Google Scholar]
- Zhao, X.; Hu, Y.; Gu, Y.; Chen, X.; Wang, X.; Wang, P.; Dong, X. Analysis of optical properties of bio-smoke materials in the 0.25–14 μm band. Chin. Phys. B 2019, 28, 034201. [Google Scholar] [CrossRef]
- Lin, N. Survey of foreign red phosphorus smoke agent. Initiat. Pyrotech. 1996, 1, 42–46. [Google Scholar]
- Zhou, M.-S.; Xu, M. Numerical calculation of 3 mm wave extinction for expanded. Acta Phys. Sin. 2013, 9, 378–384. [Google Scholar]
- Qi, H.; Zhang, X.; Jiang, M.; Yang, L.; Li, D. Optical constants of polyacrylamide solution in infrared spectral region. Optik 2017, 146, 27–32. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Li, S.; Jiang, C.; Ji, Y.; Chen, D. Study on the composite dispersion model of optical constants of metal-oxide films in the range from ultraviolet to near infrared. Optik 2018, 168, 892–900. [Google Scholar] [CrossRef]
- Dou, Z.-W.; Li, X.-X.; Zhao, J.-J. Complex refraction indices of expanded graphite deduced from its reflection spectra in infrared band. Acta Armamentarii 2011, 32, 498–502. [Google Scholar]
- Wang, M.-J.; Wu, Z.-S.; Li, Y.-L.; Xiang, N.-J. Numerical inversion of the optical characteristics of film material based on Kramers-Kronig relations. Infrared Laser Eng. 2010, 39, 120–123. [Google Scholar]
- Zamiri, R.; Rebelo, A.; Zamiri, G.; Adnani, A.; Kuashal, A.; Belsley, M.S.; Ferreira, J.M.F. Far-infrared optical constants of ZnO and ZnO/Ag nanostructures. RSC Adv. 2014, 4, 20902–20908. [Google Scholar] [CrossRef]
- Barber, P.W. Absorption and scattering of light by small particles. J. Colloid Interface Sci. 1984, 98, 290–291. [Google Scholar] [CrossRef]
- Segal-Rosenheimer, M.; Linker, R. Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers–Kronig transform. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1147–1161. [Google Scholar] [CrossRef]
Band | Light Source | Detector | ||
---|---|---|---|---|
Light Source Model | Emission Spectral Range | Detector Model | Response Spectral Range | |
UV | NBeT Merc-500 mercury lamp | 180~500 nm | Newport 843-R (Probe model 818UV) | 200~1100 nm |
VIS | MBL-FN-473 BK 11367 | 473 nm | OPHIR Starlite (Probe model PD300) | 350~1100 nm |
NIR | MIL-H-1064 BH 81394 | 1.064 μm | OPHIR Starlite (Probe model PD300) | 350~1100 nm |
MIR | Fuyuan black body HFX-300A | Temperature 5~400 °C | FLIR SC7000 | 3.8~5.1 μm |
FIR | Fuyuan black body HFX-300A | Temperature 5~400 °C | VARIO CAM HD | 8~14 μm |
Type | UV | VIS | NIR | MIR | FIR | |||||
---|---|---|---|---|---|---|---|---|---|---|
τ (%) | α (m2/g) | τ (%) | α (m2/g) | τ (%) | α (m2/g) | τ (%) | α (m2/g) | τ (%) | α (m2/g) | |
AO | 24.51 | 0.43 | 2.46 | 1.12 | 16.97 | 0.53 | 6.27 | 0.84 | 26.01 | 0.41 |
AN | 29.95 | 0.36 | 6.49 | 0.83 | 20.07 | 0.48 | 11.33 | 0.66 | 28.79 | 0.38 |
BB | 19.23 | 0.50 | 2.21 | 1.15 | 5.70 | 0.87 | 24.51 | 0.43 | 36.91 | 0.30 |
Type | AO | Graphite Powder | Silica Powder | Aluminum Powder | Copper Powder | Iron Powder | Red Phosphorus Powder | |
---|---|---|---|---|---|---|---|---|
α (m2/g) | MIR | 0.84 | 0.80 | 0.17 | 1.03 | 0.39 | 0.39 | 0.66 |
FIR | 0.41 | 0.53 | 0.49 | 0.79 | 0.39 | 0.32 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Hu, Y.; Gu, Y.; Wang, X.; Wang, P. Analysis of Compounding and Broadband Extinction Properties of Novel Bioaerosols. Photonics 2023, 10, 357. https://doi.org/10.3390/photonics10040357
Chen X, Hu Y, Gu Y, Wang X, Wang P. Analysis of Compounding and Broadband Extinction Properties of Novel Bioaerosols. Photonics. 2023; 10(4):357. https://doi.org/10.3390/photonics10040357
Chicago/Turabian StyleChen, Xi, Yihua Hu, Youlin Gu, Xinyu Wang, and Peng Wang. 2023. "Analysis of Compounding and Broadband Extinction Properties of Novel Bioaerosols" Photonics 10, no. 4: 357. https://doi.org/10.3390/photonics10040357
APA StyleChen, X., Hu, Y., Gu, Y., Wang, X., & Wang, P. (2023). Analysis of Compounding and Broadband Extinction Properties of Novel Bioaerosols. Photonics, 10(4), 357. https://doi.org/10.3390/photonics10040357