Vortical Differential Scattering of Twisted Light by Dielectric Chiral Particles
Abstract
:1. Introduction
2. Theoretical Formulae
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mun, J.; Kim, M.; Yang, Y.; Badloe, T.; Ni, J.C.; Chen, Y.; Qiu, C.W.; Rho, J. Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl. 2020, 9, 139. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res. 2019, 1, 033080. [Google Scholar] [CrossRef] [Green Version]
- Araoka, F.; Verbiest, T.; Clays, K.; Persoons, A. Interactions of twisted light with chiral molecules: An experimental investigation. Phys. Rev. A 2005, 71, 055401. [Google Scholar] [CrossRef]
- Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2016, 2, e1501349. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.A.; Andrews, D.L. Optical orbital angular momentum: Twisted light and chirality. Opt. Lett. 2018, 43, 435–438. [Google Scholar] [CrossRef]
- Forbes, K.A. Raman optical activity using twisted photons. Phys. Rev. Lett. 2019, 122, 103201. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.A. Nonlinear chiral molecular photonics using twisted light: Hyper-Rayleigh and hyper-Raman optical activity. J. Opt. 2020, 22, 095401. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Orbital angular momentum of twisted light: Chirality and optical activity. J. Phys. Photonics 2021, 3, 022007. [Google Scholar] [CrossRef]
- Wang, B.; Tanksalvala, M.; Zhang, Z.; Esashi, Y.; Jenkins, N.W.; Murnane, M.M.; Kapteyn, H.C.; Liao, C.T. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 2021, 29, 3342–3358. [Google Scholar] [CrossRef]
- Ni, J.C.; Liu, S.L.; Wu, D.; Lao, Z.X.; Wang, Z.Y.; Huang, K.; Ji, S.Y.; Li, J.W.; Huang, Z.X.; Xiong, Q.H.; et al. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl. Acad. Sci. USA 2020, 118, e2020055118. [Google Scholar] [CrossRef]
- Ye, L.; Rouxel, J.R.; Asban, S.; Rösner, B.; Mukamel, S. Probing molecular chirality by orbital angular momentum carrying X-ray pulses. J. Chem. Theory Comput. 2019, 15, 4180–4186. [Google Scholar] [CrossRef]
- Wozniak, P.; Leon, I.D.; Hoflich, K.; Leuchs, G.; Banzer, P. Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer. Optica 2019, 6, 961–965. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.A.; Garth, A.J. Optical vortex dichroism in chiral particles. Phys. Rev. A 2021, 103, 053515. [Google Scholar] [CrossRef]
- Ni, J.C.; Liu, S.L.; Hu, G.W.; Hu, Y.L.; Lao, Z.X.; Li, J.W.; Zhang, Q.; Wu, D.; Dong, S.H.; Chu, J.R.; et al. Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum. ACS Nano 2021, 15, 2893–2900. [Google Scholar] [CrossRef]
- Sakamoto, M.; Uemura, N.; Saito, R.; Shimobayashi, H.; Yoshida, Y.; Mino, T.; Omatsu, T. Chirogenesis and amplification of molecular Chirality using optical vortices. Angew. Chem. Int. Ed. 2021, 60, 12819–12823. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.Q.; Zhang, Q.; Liu, X.G.; Zhang, Y.J. Behavior of SPPs in chiral-graphene-chiral structure. Opt. Lett. 2021, 46, 1975–1978. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Wu, F.P.; Cui, Z.W.; Guo, S.Y.; Ma, W.Q.; Wang, J. Chirality of optical vortex beams reflected from an air-chiral medium interface. Opt. Express 2022, 30, 21687–21697. [Google Scholar] [CrossRef]
- Song, P.; Cui, Z.W.; Hui, Y.F.; Zhao, W.J.; Wang, J.J.; Han, Y.P. Explicit analytical expressions for the electromagnetic field components of typical structured light beams. J. Quant. Spectrosc. Radiat. Transf. 2020, 241, 106715. [Google Scholar] [CrossRef]
- Worasawate, D.; Mautz, J.R.; Arvas, E. Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body. IEEE Trans. Antennas. Propag. 2003, 51, 1077–1084. [Google Scholar] [CrossRef]
- Cui, Z.W.; Guo, S.Y.; Wang, J.; Wu, F.P.; Han, Y.P. Light scattering of Laguerre-Gaussian vortex beams by arbitrarily shaped chiral particles. J. Opt. Soc. Am. A 2021, 38, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.F. Field Computation by Moment Methods; Macmillan: New York, NY, USA, 1968. [Google Scholar]
- Rao, S.M.; Wilton, D.R.; Glisson, A.W. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas. Propag. 1982, 30, 409–418. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cui, Z.; Shi, Y.; Guo, S.; Wu, F. Vortical Differential Scattering of Twisted Light by Dielectric Chiral Particles. Photonics 2023, 10, 237. https://doi.org/10.3390/photonics10030237
Wang J, Cui Z, Shi Y, Guo S, Wu F. Vortical Differential Scattering of Twisted Light by Dielectric Chiral Particles. Photonics. 2023; 10(3):237. https://doi.org/10.3390/photonics10030237
Chicago/Turabian StyleWang, Ju, Zhiwei Cui, Yiyu Shi, Shenyan Guo, and Fuping Wu. 2023. "Vortical Differential Scattering of Twisted Light by Dielectric Chiral Particles" Photonics 10, no. 3: 237. https://doi.org/10.3390/photonics10030237
APA StyleWang, J., Cui, Z., Shi, Y., Guo, S., & Wu, F. (2023). Vortical Differential Scattering of Twisted Light by Dielectric Chiral Particles. Photonics, 10(3), 237. https://doi.org/10.3390/photonics10030237