Numerical Analysis of Structural Color for Photonic Crystal Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photonic Crystal Hydrogel Preparation
2.2. Characterization
2.3. Structural Color Analysis Based on PhCs Digital Photos
2.4. Color Difference Analysis
- For each color in one palette, the CIELAB color difference between this color and each of the colors in the second palette are calculated. The minimum color difference is recorded.
- Step 1 is repeated for all the colors in the first palette, finding their closest corresponding colors in the second palette, resulting in 5 color differences.
- The 5 minimum color difference values are averaged and the mean value symbolized as m1.
- Steps 1–3 are repeated, but this time for each of the colors in the second palette. In other words, for each of these colors, the closest corresponding color in the first palette is found. The mean value of these 5 color differences is symbolized as m2.
- The values of m1 and m2 are averaged to obtain the color difference between the two palettes.
3. Results and Discussion
3.1. True-Color Digital Photos of Photonic Crystal Hydrogel
3.2. Color Quantification
3.3. The Principle of Color Modulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parretta, A. All the light from the Newton’s Prism: Effects of the multiple internal reflections. Opt. Commun. 2020, 474, 10. [Google Scholar] [CrossRef]
- Cantrell, K.; Erenas, M.M.; de Orbe-Paya, I.; Capitan-Vallvey, L.F. Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors. Anal. Chem. 2010, 82, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Y.; Westland, S.; Xiao, K.D. Predicting visual similarity between colour palettes. Color Res. Appl. 2020, 45, 401–408. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S. Structural colors in nature: The role of regularity and irregularity in the structure. Chem. Phys. Chem. 2005, 6, 1442–1459. [Google Scholar] [CrossRef]
- Barrows, F.P.; Bart, M.H. Photonic Structures in Biology: A Possible Blueprint for Nanotechnology. Nanomater. Nanotechnol. 2014, 4, 12. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef]
- Liu, Z.D.; Gao, J.J.; Li, B.; Zhou, J. Temperature tunable photonic band gap crystals based on liquid-infiltrated inverse opal structure. Opt. Mater. 2013, 35, 1134–1137. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, L.L.; Lamont, D.N.; Velankar, S.S.; Asher, S.A. Fabrication of Large-Area Two-Dimensional Colloidal Crystals. Angew. Chem.-Int. Edit. 2012, 51, 6117–6120. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, L.L.; Chao, X.; Velankar, S.S.; Asher, S.A. Vertical spreading of two-dimensional crystalline colloidal arrays. J. Mater. Chem. C 2013, 1, 6099–6102. [Google Scholar] [CrossRef]
- Zhang, J.T.; Chao, X.; Liu, X.Y.; Asher, S.A. Two-dimensional array Debye ring diffraction protein recognition sensing. Chem. Commun. 2013, 49, 6337–6339. [Google Scholar] [CrossRef]
- Painter, O.; Lee, R.K.; Scherer, A.; Yariv, A.; O’Brien, J.D.; Dapkus, P.D.; Kim, I. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef] [PubMed]
- Snoswell, D.R.E.; Bower, C.L.; Ivanov, P.; Cryan, M.J.; Rarity, J.G.; Vincent, B. Dynamic control of lattice spacing within colloidal crystals. New J. Phys. 2006, 8, 10. [Google Scholar] [CrossRef]
- Holtz, J.H.; Asher, S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997, 389, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Potyrailo, R.A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J.R.; Olson, E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonics 2007, 1, 123–128. [Google Scholar] [CrossRef]
- von Freymann, G.; Kitaev, V.; Lotschz, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef]
- Ge, J.P.; Yin, Y.D. Responsive Photonic Crystals. Angew. Chem.-Int. Edit. 2011, 50, 1492–1522. [Google Scholar] [CrossRef]
- Li, T.; Liu, G.; Kong, H.; Yang, G.; Wei, G.; Zhou, X. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 2023, 475, 214909. [Google Scholar]
- Cai, Z.Y.; Li, Z.W.; Ravaine, S.; He, M.X.; Song, Y.L.; Yin, Y.D.; Zheng, H.B.; Teng, J.H.; Zhang, A.O. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951. [Google Scholar] [CrossRef]
- Weissman, J.M.; Sunkara, H.B.; Tse, A.S.; Asher, S.A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 1996, 274, 959–960. [Google Scholar] [CrossRef]
- Fan, Y.; Pu, S.; Li, D.; Zhao, Y.; Yuan, M.; Wang, J.; Liu, W. Bilaterally Polished Photonic Crystal Fiber Magnetic Field Sensor Based on Lossy Mode Resonance. IEEE Sens. J. 2022, 22, 23786–23792. [Google Scholar] [CrossRef]
- Yu, Y.; Brandt, S.; Nicolas, N.J.; Aizenberg, J. Colorimetric Ethanol Indicator Based on Instantaneous, Localized Wetting of a Photonic Crystal. ACS Appl. Mater. Interfaces 2020, 12, 1924–1929. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.Y.; Zhang, Y.Q.; Cai, Z.Y.; Liu, R.X.; Xu, X.Y.; Li, R.; Wang, J.J.; Yang, D.A. Three-dimensional/two-dimensional photonic crystal hydrogels for biosensing. J. Mater. Chem. C 2021, 9, 5840–5857. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Kwak, D.H.; Punihaole, D.; Hong, Z.M.; Velankar, S.S.; Liu, X.Y.; Asher, S.A. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans. Angew. Chem.-Int. Edit. 2015, 54, 13036–13040. [Google Scholar] [CrossRef]
- Osada, Y.; Gong, J.P. Soft and wet materials: Polymer gels. Adv. Mater. 1998, 10, 827–837. [Google Scholar] [CrossRef]
- Ding, H.J.; Wei, Y.M.; Wu, Z.X.; Tao, K.; Ding, M.H.; Xie, X.; Wu, J. Recent Advances in Gas and Humidity Sensors Based on 3D Structured and Porous Graphene and Its Derivatives. ACS Mater. Lett. 2020, 2, 1381–1411. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, L.; Shea, K.J.; Fan, J.; Liu, Y.; Zheng, W.; Xue, M.; Liu, W.; Xu, Z.; Xiu-Tian-Feng, E.; et al. Quantitative Analysis of Structure Color of Photonic Crystal Sensors Based on HSB Color Space. ACS Appl. Mater. Interfaces 2022, 14, 35010–35019. [Google Scholar] [CrossRef]
- Abernathy, A.; Celebi, M.E. The incremental online k-means clustering algorithm and its application to color quantization. Expert Syst. Appl. 2022, 207, 117927. [Google Scholar]
- Pan, Q.; Westland, S. Comparative Evaluation of Color Differences between Color Palettes. Color Imaging Conf. 2018, 2018, 110–115. [Google Scholar] [CrossRef]
- Jang, J.; Kang, K.; Raeis-Hosseini, N.; Ismukhanova, A.; Jeong, H.; Jung, C.; Kim, B.; Lee, J.Y.; Park, I.; Rho, J. Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal-Hydrogel-Metal Filters. Adv. Opt. Mater. 2020, 8, 7. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, L.; Lu, W.; Yu, Y.; Meng, Z.; Wang, S.; Xue, M.; Liu, W.-F. Preparation of opal type photonic crystal infrared stealth materials. J. Phys. 2017, 66, 158–164. [Google Scholar]
- Ho, K.M.; Chan, C.T.; Soukoulis, C.M. Existence of a Photonic Gap in Periodic Dielectric Structures. Phys. Rev. Lett. 1990, 65, 3152–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Photonic Crystals | Color Difference | Feature Differences | Ostwald Color Model |
---|---|---|---|
2D | 122.1008 | 100 nm | |
73.70763 | 120 nm | ||
29.60228 | 100 nm | ||
3D | 19.77749 | 73 nm | |
17.80402 | 70 nm | ||
13.70737 | 25 nm | ||
Temperature sensor | 18.80761 | 10 °C | |
7.426129 | 10 °C | ||
15.60085 | 15 °C | ||
Humidity sensor | 16.00871 | 11.4% | |
28.35319 | 18.6% | ||
15.9431 | 14.6% | ||
8.395561 | 15.4% | ||
5.486445 | 16.2% |
Serial Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Styrene (mL) | 48.4 | 48.4 | 48.4 | 48.4 | 48.4 | 55 | 60 | 70 |
Potassium peroxydisulfate (g) | 0.3 | 0.5 | 0.8 | 1.2 | 1.8 | 1.8 | 1.8 | 1.8 |
H2O (mL) | 480 | 480 | 480 | 480 | 480 | 480 | 480 | 480 |
Particle size (nm) | 475 | 500 | 534 | 600 | 720 | 805 | 820 | 870 |
Serial Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Styrene (mL) | 20 | 25 | 28 | 30 | 35 | 40 | 40 | 40 | 40 |
H2O (mL) | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 |
Dodecyl Sodium Sulfonate (g) | 0.5 | 0.5 | 0.5 | 0.5 | 0.38 | 0.25 | 0.2 | 0.17 | 0.1 |
Ammonium persulphate (g) | 0.05 | 0.05 | 0.05 | 0.1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Particle size (nm) | 132 | 161 | 180 | 205 | 275 | 300 | 340 | 358 | 416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Meng, Z.; Qiao, Y.; Li, B. Numerical Analysis of Structural Color for Photonic Crystal Hydrogel. Photonics 2023, 10, 186. https://doi.org/10.3390/photonics10020186
Guo J, Meng Z, Qiao Y, Li B. Numerical Analysis of Structural Color for Photonic Crystal Hydrogel. Photonics. 2023; 10(2):186. https://doi.org/10.3390/photonics10020186
Chicago/Turabian StyleGuo, Jiong, Zihui Meng, Yu Qiao, and Bingquan Li. 2023. "Numerical Analysis of Structural Color for Photonic Crystal Hydrogel" Photonics 10, no. 2: 186. https://doi.org/10.3390/photonics10020186
APA StyleGuo, J., Meng, Z., Qiao, Y., & Li, B. (2023). Numerical Analysis of Structural Color for Photonic Crystal Hydrogel. Photonics, 10(2), 186. https://doi.org/10.3390/photonics10020186