Metasurfaces Excited by an Evanescent Wave for Terahertz Beam Splitters with a Tunable Splitting Ratio
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Horiguchi, S.; Minamikata, Y.; Yoshimizu, Y.; Hisatake, S.; Kuwano, S.; Yoshimoto, N.; Terada, J.; Takahashi, H. Terahertz wireless communications based on photonics technologies. Opt. Express 2013, 21, 23736–23747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—Explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266–S280. [Google Scholar] [CrossRef]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Tiang, C.K.; Cunningham, J.; Wood, C.; Hunter, I.C.; Davies, A.G. Electromagnetic simulation of terahertz frequency range filters for genetic sensing. J. Appl. Phys. 2006, 100, 066105. [Google Scholar] [CrossRef]
- Liang, J.X.; Ning, T.Y.; Fan, J.Y.; Zhang, M.; Su, H.; Zeng, Y.J.; Liang, H.W. Metallic waveguide transmitarrays for dual-band multibeam terahertz antennas. Appl. Phys. Lett. 2021, 119, 253501. [Google Scholar] [CrossRef]
- Fan, J.Y.; Zhang, L.; Wu, Z.Y.; Liang, J.X.; Ning, T.Y.; Zhang, M.; Su, H.; Liang, H.W. Simultaneous and independent control of phase and polarization in terahertz band for functional integration of multiple devices. Opt. Laser Technol. 2022, 151, 108064. [Google Scholar] [CrossRef]
- Berry, C.W.; Jarrahi, M. Broadband Terahertz Polarizing Beam Splitter on a Polymer Substrate. J. Infrared Millim. Terahertz 2011, 33, 127–130. [Google Scholar] [CrossRef]
- Homes, C.C.; Carr, G.L.; Lobo, R.P.S.M.; LaVeigne, J.D.; Tanner, D.B. Silicon beam splitter for far-infrared and terahertz spectroscopy. Appl. Opt. 2007, 46, 7884–7888. [Google Scholar] [CrossRef]
- Lai, W.; Born, N.; Schneider, L.M.; Rahimi-Iman, A.; Balzer, J.C.; Koch, M. Broadband antireflection coating for optimized terahertz beam splitters. Opt. Mater. Express 2015, 5, 2812–2819. [Google Scholar] [CrossRef]
- Naylor, D.A.; Boreiko, R.T.; Clark, T.A. Mylar beam-splitter efficiency in far infrared interferometers: Angle of incidence and absorption effects. Appl. Opt. 1978, 17, 1055–1058. [Google Scholar] [CrossRef] [PubMed]
- Kampffmeyer, G.; Pfeil, A. Self-supporting thin-film beam splitter for far-infrared interferometers. Appl. Phys. 1977, 14, 313–317. [Google Scholar] [CrossRef]
- Rowell, N.L.; Wang, E.A. Bilayer free-standing beam splitter for Fourier transform infrared spectrometry. Appl. Opt. 1996, 35, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Taylor, A.J.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [Green Version]
- Beruete, M.; Jáuregui-López, I. Terahertz sensing based on metasurfaces. Adv. Opt. Mater. 2019, 8, 1900721. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, S.; Lu, X.; Saeidi, H.; Sengupta, K. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron. 2020, 3, 785–793. [Google Scholar] [CrossRef]
- Cong, L.; Srivastava, Y.K.; Zhang, H.; Zhang, X.; Han, J.; Singh, R. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl. 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Niu, T.; Withayachumnankul, W.; Upadhyay, A.; Gutruf, P.; Abbott, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C. Terahertz reflectarray as a polarizing beam splitter. Opt. Express 2014, 22, 16148–16160. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Xu, Q.; Bao, D.; Du, L.; Wan, X.; Tang, W.X.; Ouyang, C.; Zhou, X.Y.; Yuan, H.; et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 2016, 5, e16076. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.S.L.; Nirantar, S.; Headland, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Broadband Terahertz Circular-Polarization Beam Splitter. Adv. Opt. Mater. 2018, 6, 1700852. [Google Scholar] [CrossRef]
- Yi, H.; Qu, S.-W.; Ng, K.-B.; Wong, C.K.; Chan, C.H. Terahertz Wavefront Control on Both Sides of the Cascaded Metasurfaces. IEEE Trans. Antennas Propag. 2018, 66, 209–216. [Google Scholar] [CrossRef]
- Zang, X.; Gong, H.; Li, Z.; Xie, J.; Cheng, Q.; Chen, L.; Shkurinov, A.P.; Zhu, Y.; Zhuang, S. Metasurface for multi-channel terahertz beam splitters and polarization rotators. Appl. Phys. Lett. 2018, 112, 171111. [Google Scholar] [CrossRef]
- Wei, M.; Xu, Q.; Wang, Q.; Zhang, X.; Li, Y.; Gu, J.; Tian, Z.; Zhang, X.; Han, J.; Zhang, W. Broadband non-polarizing terahertz beam splitters with variable split ratio. Appl. Phys. Lett. 2017, 111, 071101. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Wang, X.; Chen, Q.; Ren, X.; Ma, Y. Terahertz Beam Splitter Based on I-Shaped Metasurface. Prog. Electromagn. Res. M 2020, 90, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, L.; Zhang, M.; Su, H.; Li, I.L.; Ruan, S.; Liang, H. Wearable Conformal Metasurfaces for Polarization Division Multiplexing. Adv. Opt. Mater. 2020, 8, 2000068. [Google Scholar] [CrossRef]
- Ginzburg, P.; Fortuno, F.J.R.; Wurtz, G.A.; Dickson, W.; Murphy, A.; Morgan, F.; Pollard, R.J.; Iorsh, I.; Atrashchenko, A.; Belov, P.A.; et al. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt. Express 2013, 21, 14907–14917. [Google Scholar] [CrossRef]
- Monticone, F.; Estakhri, N.M.; Alù, A. Full Control of Nanoscale Optical Transmission with a Composite Metascreen. Phys. Rev. Lett. 2013, 110, 203903. [Google Scholar] [CrossRef]
- Ordal, M.A.; Long, L.L.; Bell, R.J.; Bell, S.E.; Bell, R.R.; Alexander, R.W.; Ward, C.A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 1983, 22, 1099–1119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Lu, J.; Zhang, M.; Su, H.; Li, L.; Qin, Q.; Liang, H. Metasurfaces Excited by an Evanescent Wave for Terahertz Beam Splitters with a Tunable Splitting Ratio. Photonics 2023, 10, 118. https://doi.org/10.3390/photonics10020118
Zhu W, Lu J, Zhang M, Su H, Li L, Qin Q, Liang H. Metasurfaces Excited by an Evanescent Wave for Terahertz Beam Splitters with a Tunable Splitting Ratio. Photonics. 2023; 10(2):118. https://doi.org/10.3390/photonics10020118
Chicago/Turabian StyleZhu, Wenqi, Jinhui Lu, Min Zhang, Hong Su, Ling Li, Qi Qin, and Huawei Liang. 2023. "Metasurfaces Excited by an Evanescent Wave for Terahertz Beam Splitters with a Tunable Splitting Ratio" Photonics 10, no. 2: 118. https://doi.org/10.3390/photonics10020118
APA StyleZhu, W., Lu, J., Zhang, M., Su, H., Li, L., Qin, Q., & Liang, H. (2023). Metasurfaces Excited by an Evanescent Wave for Terahertz Beam Splitters with a Tunable Splitting Ratio. Photonics, 10(2), 118. https://doi.org/10.3390/photonics10020118