Effect of a Femtosecond-Scale Temporal Structure of a Laser Driver on Generation of Betatron Radiation by Wakefield Accelerated Electrons
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
FWHM | Full Width at Half Maximum |
References
- Seeck, O.; Murphy, B. X-ray Diffraction: Modern Experimental Techniques; Pan Stanford Publishing: Redwood City, CA, USA, 2015. [Google Scholar]
- Sanchez-Cano, C.; Alvarez-Puebla, R.A.; Abendroth, J.M.; Beck, T.; Blick, R.; Cao, Y.; Caruso, F.; Chakraborty, I.; Chapman, H.N.; Chen, C.; et al. X-ray-based techniques to study the nano–bio interface. ACS Nano 2021, 15, 3754–3807. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Chen, S.; Powers, N.; Haden, D.; Liu, C.; Golovin, G.; Zhang, J.; Zhao, B.; Clarke, S.; Pozzi, S.; et al. Compact source of narrowband and tunable X-rays for radiography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 350, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Flegentov, V.; Safronov, K.; Gorokhov, S.; Tishchenko, A.; Kovaleva, S.; Potapov, A.; Pavlenko, A. Pulsed laser-plasma gamma radiation source for radiography. Quantum Electron. 2021, 51, 866–872. [Google Scholar] [CrossRef]
- Davis, T.J.; Gao, D.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 1995, 373, 595–598. [Google Scholar] [CrossRef]
- Najmudin, Z.; Kneip, S.; Bloom, M.S.; Mangles, S.P.D.; Chekhlov, O.; Dangor, A.E.; Döpp, A.; Ertel, K.; Hawkes, S.J.; Holloway, J.; et al. Compact laser accelerators for X-ray phase-contrast imaging. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130032. [Google Scholar] [CrossRef]
- Corde, S.; Ta Phuoc, K.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 2013, 85, 1. [Google Scholar] [CrossRef]
- Albert, F.; Thomas, A.G.R.; Mangles, S.P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Vieira, J.; Najmudin, Z.; et al. Laser wakefield accelerator based light sources: Potential applications and requirements. Plasma Phys. Control. Fusion 2014, 56, 084015. [Google Scholar] [CrossRef]
- Umstadter, D.P. All-laser-driven Thomson X-ray sources. Contemp. Phys. 2015, 56, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Esarey, E.; Shadwick, B.A.; Catravas, P.; Leemans, W.P. Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 2002, 65, 056505. [Google Scholar] [CrossRef] [Green Version]
- Kostyukov, I.; Kiselev, S.; Pukhov, A. X-ray generation in an ion channel. Phys. Plasmas 2003, 10, 4818–4828. [Google Scholar] [CrossRef]
- Kiselev, S.; Pukhov, A.; Kostyukov, I. X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett. 2004, 93, 135004. [Google Scholar] [CrossRef] [PubMed]
- Albert, F.; Thomas, A.G.R. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control. Fusion 2016, 58, 103001. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F.; Mori, W.; Vieira, J.; Fonseca, R.; Silva, L. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top.-Accel. Beams 2007, 10, 061301. [Google Scholar] [CrossRef] [Green Version]
- Gordienko, S.; Pukhov, A. Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 2005, 12, 043109. [Google Scholar] [CrossRef] [Green Version]
- Khazanov, E.A.; Mironov, S.Y.; Mourou, G. Nonlinear compression of high-power laser pulses: Compression after compressor approach. Phys.-Uspekhi 2019, 62, 1096. [Google Scholar] [CrossRef]
- Ginzburg, V.N.; Yakovlev, I.V.; Zuev, A.S.; Korobeynikova, A.P.; Kochetkov, A.A.; Kuz’min, A.A.; Mironov, S.Y.; Shaykin, A.A.; Shaykin, I.A.; Khazanov, E.A. Compression after compressor: Threefold shortening of 200-TW laser pulses. Quantum Electron. 2019, 49, 299–301. [Google Scholar] [CrossRef]
- Ginzburg, V.N.; Yakovlev, I.V.; Zuev, A.S.; Korobeynikova, A.P.; Kochetkov, A.A.; Kuzmin, A.A.; Mironov, S.Y.; Shaykin, A.A.; Shaikin, I.A.; Khazanov, E.A. Two-stage nonlinear compression of high-power femtosecond laser pulses. Quantum Electron. 2020, 50, 331–334. [Google Scholar] [CrossRef]
- Ginzburg, V.; Yakovlev, I.; Zuev, A.; Korobeynikova, A.; Kochetkov, A.; Kuzmin, A.; Mironov, S.; Shaykin, A.; Shaikin, I.; Khazanov, E.; et al. Fivefold compression of 250-TW laser pulses. Phys. Rev. A 2020, 101, 013829. [Google Scholar] [CrossRef]
- Mironov, S.Y.; Fourmaux, S.; Lassonde, P.; Ginzburg, V.N.; Payeur, S.; Kieffer, J.C.; Khazanov, E.A.; Mourou, G. Thin plate compression of a sub-petawatt Ti:Sa laser pulses. Appl. Phys. Lett. 2020, 116, 241101. [Google Scholar] [CrossRef]
- Shaykin, A.; Ginzburg, V.; Yakovlev, I.; Kochetkov, A.; Kuzmin, A.; Mironov, S.; Shaikin, I.; Stukachev, S.; Lozhkarev, V.; Prokhorov, A.; et al. Use of KDP crystal as a Kerr nonlinear medium for compressing PW laser pulses down to 10 fs. High Power Laser Sci. Eng. 2021, 9, e54. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, Y.G.; Yang, J.M.; Yoon, J.W.; Sung, J.H.; Lee, S.K.; Nam, C.H. Sub-10 fs pulse generation by post-compression for peak-power enhancement of a 100-TW Ti:Sapphire laser. Opt. Express 2022, 30, 8734–8741. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, V.; Yakovlev, I.; Kochetkov, A.; Kuzmin, A.; Mironov, S.; Shaikin, I.; Shaykin, A.; Khazanov, E. 11 fs, 1.5 PW laser with nonlinear pulse compression. Opt. Express 2021, 29, 28297. [Google Scholar] [CrossRef]
- Fourmaux, S.; Lassonde, P.; Mironov, S.Y.; Hallin, E.; Légaré, F.; Maclean, S.; Khazanov, E.A.; Mourou, G.; Kieffer, J.C. Laser wakefield acceleration based x ray source using 225-TW and 13-fs laser pulses produced by thin film compression. Opt. Lett. 2022, 47, 3163. [Google Scholar] [CrossRef] [PubMed]
- Maslov, V.; Bondar, D.; Grigorencko, V.; Levchuk, I.; Onishchenko, I. Control of Characteristics of Self-Injected and Accelerated Electron Bunch in Plasma by Laser Pulse Shaping on Radius, Intensity and Shape. Probl. At. Sci. Technol. 2019, 124, 39–42. [Google Scholar] [CrossRef]
- Surmin, I.A.; Bastrakov, S.I.; Efimenko, E.S.; Gonoskov, A.A.; Korzhimanov, A.V.; Meyerov, I.B. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 2016, 202, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Gonoskov, A.; Bastrakov, S.; Efimenko, E.; Ilderton, A.; Marklund, M.; Meyerov, I.; Muraviev, A.; Sergeev, A.; Surmin, I.; Wallin, E. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. Phys. Rev. E 2015, 92, 023305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Khudik, V.N.; Shvets, G. Synergistic Laser Wakefield/Direct Laser Acceleration in the Plasma Bubble Regime. Phys. Rev. Lett. 2015, 114, 184801. [Google Scholar] [CrossRef] [Green Version]
- Martyanov, M.; Mironov, S.; Starodubtsev, M.; Soloviev, A.; Kochetkov, A.; Ginzburg, V.; Shaikin, A.; Khazanov, E. Improvement of the focusability of petawatt laser pulses after nonlinear post-compression. J. Opt. Soc. Am. B 2022, 39, 1936. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sladkov, A.D.; Korzhimanov, A.V. Effect of a Femtosecond-Scale Temporal Structure of a Laser Driver on Generation of Betatron Radiation by Wakefield Accelerated Electrons. Photonics 2023, 10, 108. https://doi.org/10.3390/photonics10020108
Sladkov AD, Korzhimanov AV. Effect of a Femtosecond-Scale Temporal Structure of a Laser Driver on Generation of Betatron Radiation by Wakefield Accelerated Electrons. Photonics. 2023; 10(2):108. https://doi.org/10.3390/photonics10020108
Chicago/Turabian StyleSladkov, Andrey D., and Artem V. Korzhimanov. 2023. "Effect of a Femtosecond-Scale Temporal Structure of a Laser Driver on Generation of Betatron Radiation by Wakefield Accelerated Electrons" Photonics 10, no. 2: 108. https://doi.org/10.3390/photonics10020108
APA StyleSladkov, A. D., & Korzhimanov, A. V. (2023). Effect of a Femtosecond-Scale Temporal Structure of a Laser Driver on Generation of Betatron Radiation by Wakefield Accelerated Electrons. Photonics, 10(2), 108. https://doi.org/10.3390/photonics10020108