Surface-Enhanced Raman Scattering Studies of Au-Ag Bimetallic Nanoparticles with a Tunable Surface Plasmon Resonance Wavelength Synthesized by Picosecond Laser Irradiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- SERS studies of bimetallic NPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braun, G.; Seung, J.L.; Dante, M.; Nguyen, T.Q.; Moskovits, M.; Reich, N. Surface-enhanced raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 2007, 129, 6378–6379. [Google Scholar] [CrossRef]
- Michaels, A.M.; Nirmal, M.; Brus, L.E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 1999, 121, 9932–9939. [Google Scholar] [CrossRef]
- Jia, M.; Li, S.; Zang, L.; Lu, X.; Zhang, H. Analysis of biomolecules based on the surface enhanced raman spectroscopy. Nanomaterials 2018, 8, 730. [Google Scholar] [CrossRef]
- Israelsen, N.D.; Hanson, C.; Vargis, E. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction. Sci. World J. 2015, 2015, 124582. [Google Scholar] [CrossRef] [PubMed]
- Asiala, S.M.; Schultz, Z.D. Characterization of hotspots in a highly enhancing SERS substrate. Analyst 2011, 136, 4472–4479. [Google Scholar] [CrossRef] [PubMed]
- Tim, B.; Błaszkiewicz, P.; Kotkowiak, M. Recent advances in metallic nanoparticle assemblies for surface-enhanced spectroscopy. Int. J. Mol. Sci. 2022, 23, 291. [Google Scholar] [CrossRef] [PubMed]
- Mandavkar, R.; Lin, S.; Pandit, S.; Kulkarni, R.; Burse, S.; Habib, M.A.; Kunwar, S.; Lee, J. Hybrid SERS platform by adapting both chemical mechanism and electromagnetic mechanism enhancements: SERS of 4-ATP and CV by the mixture with GQDs on hybrid PdAg NPs. Surf. Interfaces 2022, 33, 102175. [Google Scholar] [CrossRef]
- Trivedi, D.J.; Barrow, B.; Schatz, G.C. Understanding the chemical contribution to the enhancement mechanism in SERS: Connection with Hammett parameters. J. Chem. Phys. 2020, 153, 124706. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Xia, L.; Chen, M.; Zhao, X.; Zhang, Z.; Xia, J.; Xu, H.; Sun, M. Visualized method of chemical enhancement mechanism on SERS and TERS. J. Raman Spectrosc. 2014, 45, 533–540. [Google Scholar] [CrossRef]
- Majumdar, D.; Singha, A.; Mondal, P.K.; Kundu, S. DNA-mediated wirelike clusters of silver nanoparticles: An ultrasensitive SERS substrate. ACS Appl. Mater. Interfaces 2013, 5, 7798–7807. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. Micromachines 2023, 14, 953. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yi, Z.; Liu, L.; Wu, X.; Liu, H.; Li, G.; Zeng, L.; Li, H.; Wu, P. Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl. Therm. Eng. 2023, 230, 120841. [Google Scholar] [CrossRef]
- Tang, B.; Li, Z.; Palacios, E.; Liu, Z.; Butun, S.; Aydin, K. Chiral-Selective Plasmonic Metasurface Absorbers Operating at Visible Frequencies. IEEE Photonics Technol. Lett. 2017, 29, 295–298. [Google Scholar] [CrossRef]
- Tang, B.; Guo, Z.; Jin, G. Polarization-controlled and symmetry-dependent multiple plasmon-induced transparency in graphene-based metasurfaces. Opt. Express 2022, 30, 35554. [Google Scholar] [CrossRef]
- Michaels, A.M.; Jiang, J.; Brus, L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000, 104, 11965–11971. [Google Scholar] [CrossRef]
- Xu, H.; Bjerneld, E.J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.C.; An, Q.; Ling, X.Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef]
- Sui, M.; Kunwar, S.; Pandey, P.; Lee, J. Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sci. Rep. 2019, 9, 16582. [Google Scholar] [CrossRef]
- Liu, S.; Chen, G.; Prasad, P.N.; Swihart, M.T. Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem. Mater. 2011, 23, 4098–4101. [Google Scholar] [CrossRef]
- Joshi, P.; Santhanam, V. Paper-based SERS active substrates on demand. RSC Adv. 2016, 6, 68545–68552. [Google Scholar] [CrossRef]
- Ko, H.; Singamaneni, S.; Tsukruk, V.V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599. [Google Scholar] [CrossRef]
- Zeng, H.; Du, X.W.; Singh, S.C.; Kulinich, S.A.; Yang, S.; He, J.; Cai, W. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Karuppasamy, K.; Min, A.; Govindarajan, D.; Kumari, M.L.A.; Muthusamy, G.; Kheawhom, S.; Kim, H.-S.; Choi, M.Y. Unraveling the fundamentals of pulsed laser-assisted synthesis of nanomaterials in liquids: Applications in energy and the environment. Appl. Phys. Rev. 2022, 9, 41314. [Google Scholar] [CrossRef]
- Harraz, F.A.; Ismail, A.A.; Bouzid, H.; Al-Sayari, S.A.; Al-Hajry, A.; Al-Assiri, M.S. Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl. Surf. Sci. 2015, 331, 241–247. [Google Scholar] [CrossRef]
- Thu, T.; Pham, H.; Dien, D.; Vu, X.H. Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection. RSC Adv. 2021, 11, 21475–21488. [Google Scholar] [CrossRef]
- Kuladeep, R.; Jyothi, L.; Alee, K.S.; Deepak, K.L.N.; Rao, D.N. Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Opt. Mater. Express 2012, 2, 161–172. [Google Scholar] [CrossRef]
- Zeiri, L.; Rechav, K.; Porat, Z.E.E.V.; Zeiri, Y. Silver Nanoparticles Deposited on Porous Silicon as a Surface-Enhanced Raman Scattering (SERS) Active Substrate. Appl. Spectrosc. 2012, 66, 294–299. [Google Scholar] [CrossRef]
- Vendamani, V.S. iScience homogeneous distribution of gold nanoparticles for biomolecules detection. Iscience 2022, 25, 104849. [Google Scholar] [CrossRef]
- Meng, X.; Shibayama, T.; Yu, R.; Takayanagi, S.; Watanabe, S. Ion irradiation synthesis of Ag–Au bimetallic nanospheroids in SiO2 glass substrate with tunable surface plasmon resonance frequency. J. Appl. Phys. 2013, 114, 054308. [Google Scholar] [CrossRef]
- Bharati, M.S.S.; Byram, C.; Shibu, S.N.; Chilukamarri, B.M.; Soma, V.R. Ag/Au nanoparticle-loaded paper-based versatile surface-enhanced Raman spectroscopy substrates for multiple explosives detection. ACS Omega 2018, 3, 8190–8201. [Google Scholar] [CrossRef]
- Bharati, M.S.S.; Chandu, B.; Rao, S.V. Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC Adv. 2019, 9, 1517–1525. [Google Scholar] [CrossRef]
- Krishnakanth, K.N.; Chandu, B.; Bharathi, M.S.S.; Raavi, S.S.K.; Rao, S.V. Ultrafast excited state dynamics and femtosecond nonlinear optical properties of laser fabricated Au and Ag50Au50 nanoparticles. Opt. Mater. 2019, 95, 109239. [Google Scholar] [CrossRef]
- Beeram, R.; Rao, S.V. Ultra-trace detection of diverse analyte molecules using femtosecond laser structured Ag–Au alloy substrates and SERRS. Opt. Mater. 2023, 137, 113615. [Google Scholar] [CrossRef]
- Rathod, J.; Moram, S.S.B.; Chandu, B.; Albrycht, P. Single-step fabrication of hybrid germanium-gold/silver nanoentities by femtosecond laser ablation and applications in SERS-based sensing. Nanotechnology 2023, 34, 405301. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Xia, X.; Wang, Y.; Xia, Y. Robust Synthesis of Gold Cubic Nanoframes through a Combination of Galvanic Replacement, Gold Deposition, and Silver Dealloying. Small 2013, 9, 3111–3117. [Google Scholar] [CrossRef] [PubMed]
- Nieto-argüello, A.; Medina-cruz, D.; Yeremi, S.P.; Sergio, A.P.; Velasco-soto, M.A.; Jafari, Z.; De Leon, I.; Huttel, Y.; Mart, L.; Mayoral, Á.; et al. Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. Nanomaterials 2022, 12, 779. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Guo, Y.; Li, J.; Yuan, M.; Long, T.; Liu, Z. Optically Active Ultra fi ne Au–Ag Alloy Nanoparticles Used for Colorimetric Chiral Recognition and Circular Dichroism Sensing of Enantiomers. Anal. Chem. 2017, 89, 9781–9787. [Google Scholar] [CrossRef]
- Yallappa, S.; Manjanna, J.; Dhananjaya, B.L. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2015, 137, 236–243. [Google Scholar] [CrossRef]
- Garcia, A.G.; Lopes, P.P.; Gomes, J.F.; Pires, C.; Ferreira, E.B.; Lucena, R.G.M.; Gasparotto, L.H.S.; Tremiliosi-Filho, G. Eco-friendly synthesis of bimetallic AuAg nanoparticles. New J. Chem. 2014, 38, 2865–2873. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Ilavenil, S.; Srigopalram, S.; Kim, D.H.; Govindan, N.; Maniam, G.P.; Yusoff, M.M. Synthesis of Bimetallic Nanoparticles (Au–Ag Alloy) Using Commelina nudiflora L. Plant Extract and Study Its on Oral Pathogenic Bacteria. J. Inorg. Organomet. Polym. 2017, 27, 562–568. [Google Scholar] [CrossRef]
- Berahim, N.; Basirun, W.J.; Leo, B.F.; Johan, M.R. Synthesis of Bimetallic Gold-Silver (Au-Ag) Nanoparticles for the Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. Catalysts 2018, 8, 412. [Google Scholar] [CrossRef]
- Tian, S.; You, W.; Shen, Y.; Gu, X.; Ge, M.; Ahmadi, S.; Ahmad, S.; Kraatz, H.B. Facile synthesis of silver-rich Au/Ag bimetallic nanoparticles with highly active SERS properties. New J. Chem. 2019, 43, 14772–14780. [Google Scholar] [CrossRef]
- Yi, S.; Kılıç, H.Ş. An improvement on the conversion efficiency of Si/CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles. Opt. Mater. 2020, 101, 109760. [Google Scholar] [CrossRef]
- Podagatlapalli, G.K.; Hamad, S.; Rao, S.V. Trace-Level Detection of Secondary Explosives Using Hybrid Silver-Gold Nanoparticles and Nanostructures Achieved with Femtosecond Laser Ablation. J. Phys. Chem. C 2015, 119, 16972–16983. [Google Scholar] [CrossRef]
- González, E. Carving at the Nanoscale: Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature. Science 2014, 334, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Liao, S.C.; Lin, T.R.; Wang, S.H.; Lai, D.Y.; Chiu, P.K.; Lee, J.W.; Wu, W.F. Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation. Opt. Express 2016, 24, 17541–17552. [Google Scholar] [CrossRef] [PubMed]
- Smitha, S.L.; Gopchandran, K.G.; Smijesh, N.; Philip, R. Progress in Natural Science: Materials International Size-dependent optical properties of Au nanorods. Prog. Nat. Sci. Mater. Int. 2013, 23, 36–43. [Google Scholar] [CrossRef]
- Saikiran, V.; Dar, M.H.; Kuladeep, R.; Desai, N.R. Ultrafast Laser Induced Subwavelength Periodic Surface Structures on Semiconductors/Metals and Application to SERS Studies. MRS Adv. 2016, 1, 3317–3327. [Google Scholar] [CrossRef]
Au:Ag | HAuCl4 (mL) | AgNO3 (mL) | PVA (mL) | Total Vol (mL) | Abs. Peak (nm) |
---|---|---|---|---|---|
1:0 | 4 | 0 | 1 | 5 | 530 |
3:1 | 3 | 1 | 1 | 5 | 494 |
1:1 | 2 | 2 | 1 | 5 | 468 |
1:3 | 1 | 3 | 1 | 5 | 428 |
0:1 | 0 | 4 | 1 | 5 | 406 |
S. No. | Energy or Fluence (mJ/cm2) | LSPR Abs Peak Position (nm) | Irradiation Time (min) |
---|---|---|---|
1 | 185 | 470 | 10 |
2 | 185 | 462 | 20 |
3 | 185 | 458 | 30 |
4 | 140 | 478 | 20 |
5 | 140 | 468 | 30 |
6 | 100 | 496 | 20 |
S. No. | Raman Peak Position Wavenumber (cm−1) | Peak Position Assign | AEF on Au:Ag = 1:1 Substrate |
---|---|---|---|
1 | 500–560, 615, 690–986 | The aromatic ring skeletal vibrations | 1.6 × 107 |
2 | 726–795, 817 | C-H out-of-plane ring bending vibrations | 2.4 × 107 |
3 | 1170–1190 | C-H in-plane ring bending vibrations | 1.2 × 108 |
4 | 1360–1390 | N-phenyl stretching vibrations | 8.3 × 107 |
5 | 1310, 1444 | The aromatic ring C-C stretching vibrations | 6.2 × 107 |
6 | 1538–1584, 1620 | The aromatic ring C-C stretching vibrations | 9.2 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babuji, P.; Taher, M.A.; Dar, M.H.; Rao, D.N.; Krishna, P.G.; Saikiran, V. Surface-Enhanced Raman Scattering Studies of Au-Ag Bimetallic Nanoparticles with a Tunable Surface Plasmon Resonance Wavelength Synthesized by Picosecond Laser Irradiation. Photonics 2023, 10, 1345. https://doi.org/10.3390/photonics10121345
Babuji P, Taher MA, Dar MH, Rao DN, Krishna PG, Saikiran V. Surface-Enhanced Raman Scattering Studies of Au-Ag Bimetallic Nanoparticles with a Tunable Surface Plasmon Resonance Wavelength Synthesized by Picosecond Laser Irradiation. Photonics. 2023; 10(12):1345. https://doi.org/10.3390/photonics10121345
Chicago/Turabian StyleBabuji, P., Md Abu Taher, Mudasir H. Dar, D. Narayana Rao, P. Gopala Krishna, and V. Saikiran. 2023. "Surface-Enhanced Raman Scattering Studies of Au-Ag Bimetallic Nanoparticles with a Tunable Surface Plasmon Resonance Wavelength Synthesized by Picosecond Laser Irradiation" Photonics 10, no. 12: 1345. https://doi.org/10.3390/photonics10121345
APA StyleBabuji, P., Taher, M. A., Dar, M. H., Rao, D. N., Krishna, P. G., & Saikiran, V. (2023). Surface-Enhanced Raman Scattering Studies of Au-Ag Bimetallic Nanoparticles with a Tunable Surface Plasmon Resonance Wavelength Synthesized by Picosecond Laser Irradiation. Photonics, 10(12), 1345. https://doi.org/10.3390/photonics10121345