1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System
Abstract
1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wysoccski, P.F.; Digonnet, M.J.; Kim, B.Y.; Shaw, H.J. Characteristics of Er3+-doped super-fluorescent fiber source for interferometric sensor application. J. Light Wave Technol. 1994, 12, 550–567. [Google Scholar] [CrossRef]
- Digonnet, M.J.F. Theory of superfluorescent fiber lasers. J. Light Wave Technol. 1986, 4, 1631–1639. [Google Scholar] [CrossRef]
- Fercher, A.F.; Drexler, W.; Hitzenhberger, C.K. Optical coherence tomography principles and applications. Rep. Prog. Phys. 2003, 66, 239–303. [Google Scholar] [CrossRef]
- Martin-Lopez, S.; Gonzalez-Herraez, M.; Carrasco-Sanz, A.; Vanholsbeeck, F.; Coen, S.; Fernandez, H.; Solis, J.; Corredera, P.; Hernanz, M.L. Broadband spectrally flat and high power density fbeam source for fibre sensing purposes. Meas. Sci. Technol. 2006, 17, 1014–1019. [Google Scholar] [CrossRef]
- Kurkov, A.S. Oscillation spectral range of Yb-doped fiber lasers. Laser Phys. Lett. 2007, 4, 93–102. [Google Scholar] [CrossRef]
- Stiles, E. New developments in IPG fiber laser technology. In Proceedings of the 5th International Workshop on Fiber Lasers, Dresden, Germany, 30 September 2009. [Google Scholar]
- He, B.; Zhou, J.; Lou, Q.; Xue, Y.; Li, Z.; Wang, W.; Dong, J.; Wei, Y.; Chen, W. 1.75 KW continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber. Microw. Opt. Technol. Lett. 2010, 52, 1668–1671. [Google Scholar] [CrossRef]
- Wirth, C.; Schmidt, O.; Tsybin, I.; Schreiber, T.; Peschel, T.; Brückner, F.; Clausnitzer, T.; Limpert, J.; Eberhardt, R.; Tünnermann, A.; et al. 2KW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers. Opt. Express 2009, 17, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sahu, J.K.; Clarkson, W.A. 110 W double-ended ytterbium-doped fiber super-fluorescent source with M2 = 1.6. Opt. Lett. 2006, 31, 3116–3118. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sahu, J.K.; Clarkson, W.A. High-power broadband ytterbium-doped helical-core fiber super-fluorescent source. IEEE Photon. Technol. Lett. 2007, 19, 300–302. [Google Scholar] [CrossRef]
- Wang, P.; Clarkson, W.A. High-power, single-mode, linearly polarized, ytterbium-doped fiber super-fluorescent source. Opt. Lett. 2007, 32, 2605–2607. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, O.; Rekas, M.; Wirth, C.; Rothhardt, J.; Rhein, S.; Kliner, A.; Strecker, M.; Schreiber, T.; Limpert, J.; Eberhardt, R.; et al. High power narrow-band fiber-based ASE source. Opt. Express 2011, 19, 4421–4427. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, J.; Wang, K.; Wang, P. All-fiber hundred-Watt-level broadband ytterbium-doped double cladding fiber super-fluorescent source. Chin. J. Lasers 2012, 39, 0802008. [Google Scholar] [CrossRef]
- Liu, J.; Liu, K.; Tan, F.; Wang, P. High-power thulium-doped all-fiber super-fluorescent sources. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3100306. [Google Scholar]
- Xu, J.M.; Huang, L.J.; Chen, J.B. 1.01 KW super-fluorescent source in all-fiberized MOPA configuration. Opt. Express 2015, 23, 5485–5490. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.F.; Huang, L.; Wang, X.L. High power broadband all fiber super fluorescent source with linear polarization and near diffraction-limited beam quality. Opt. Express 2016, 24, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; An, Y.; Pan, Z.; Huang, Z.; Yu, Y.; Guo, S.; Chen, J. A 186-Watt all-fiber single-stage super-fluorescent source. In Proceedings of the CLEO: Science and Innovations 2016, San Jose, CA, USA, 5–10 June 2016; p. SM4Q.7. [Google Scholar]
- Li, Z.; Li, G.; Gao, Q.I.; Wu, P.; She, S.F.; Wang, Z.L.; Huang, N.; Sun, C.; Gao, W.; Ju, P.; et al. Kilowatt-level tunable all-fiber narrowband super-fluorescent fiber source with 40 nm tuning range. Opt. Express 2020, 28, 10378–10385. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wu, H.S.; Ren, S.; Liu, W.; Ma, P.F.; Xiao, H.; Zhou, P. Comparisons of kilowatt Yb-Raman fiber amplifiers employing a super-fluorescent fiber source and fiber oscillator. Opt. Express 2021, 29, 22966–22972. [Google Scholar] [CrossRef] [PubMed]
- Perevezentsev, E.; Poteomkin, A.; Khazanov, E. Comparison of phase-aberrated laser beam quality criteria. Appl. Opt. 2007, 46, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Siegman, A.E. New developments in laser resonators. Proc. SPIE 1990, 1224, 2–14. [Google Scholar]
- Siegman, A.E. How to (maybe) measure laser beam quality. In DPSS (Diode Pumped Solid State) Lasers: Applications and Issues; Vol. 17 of OSA Trends in Optics and Photonics, Paper MQ1; Dowley, M., Ed.; Optical Society of America: Washington, DC, USA, 1998. [Google Scholar]
- Borgentun, C.; Bengtsson, J.; Larsson, A. Full characterization of a high-power semiconductor disk laser beam with simultaneous capture of optimally sized focus and farfield. Appl. Opt. 2011, 50, 1640–1649. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, Z.; Xu, X.; Liu, J.; Bai, X. 1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System. Photonics 2023, 10, 81. https://doi.org/10.3390/photonics10010081
Li X, Zhang Z, Xu X, Liu J, Bai X. 1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System. Photonics. 2023; 10(1):81. https://doi.org/10.3390/photonics10010081
Chicago/Turabian StyleLi, Xin, Zhe Zhang, Xinyang Xu, Junjie Liu, and Xiaolei Bai. 2023. "1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System" Photonics 10, no. 1: 81. https://doi.org/10.3390/photonics10010081
APA StyleLi, X., Zhang, Z., Xu, X., Liu, J., & Bai, X. (2023). 1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System. Photonics, 10(1), 81. https://doi.org/10.3390/photonics10010081