Phase State Influence on Photoluminescence of MAPb(BrxI1−x)3 Perovskites towards Optimized Photonics Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Characterization
2.3.1. Structural Characterization
2.3.2. Optical Characterization
3. Results and Discussion
3.1. Samples Morphology and Crystalline Structure
3.2. Spectral Characteristics
3.3. Temperature-Dependent of Phase Structure and PL for MAPb(BrxI1−x)3 Perovskites
3.4. Activation Energy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milot, R.L.; Eperon, G.E.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films. Adv. Funct. Mater. 2015, 25, 6218–6227. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, M.; Luo, H. Electric-Field-Induced Dynamic Electronic Junctions in Hybrid Organic–Inorganic Perovskites for Optoelectronic Applications. ACS Omega 2018, 3, 1445–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaithan, H.M.; Qaid, S.M.H.; Alharbi, K.K.; Bin Ajaj, A.F.; Al-Asbahi, B.A.; Aldwayyan, A.S. Amplified Spontaneous Emission from Thermally Evaporated High-Quality Thin Films of CsPb(Br1- xYx)3(Y = I, Cl) Perovskites. Langmuir 2022, 38, 8607–8613. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Qaid, S.M.; Hezam, M.; Bedja, I.; Ghaithan, H.M.; Aldwayyan, A.S. Effect of deposition method on the structural and optical properties of CH3NH3PbI3 perovskite thin films. Opt. Mater. 2020, 103, 109836. [Google Scholar] [CrossRef]
- Verduci, R.; Romano, V.; Brunetti, G.; Yaghoobi Nia, N.; Di Carlo, A.; D’Angelo, G. Solar Energy in Space Applications: Review and Technology Perspectives. Adv. Energy Mater. 2022, 12, 2200125. [Google Scholar] [CrossRef]
- Bhalla, A.; Guo, R.; Roy, R. The perovskite structure—A review of its role in ceramic science and technology. Mater. Res. Innov. 2000, 4, 3–26. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Bakr, O.M.; Sun, H.-T. Metal-Doped Lead Halide Perovskites: Synthesis, Properties, and Optoelectronic Applications. Chem. Mater. 2018, 30, 6589–6613. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Cryst. Sect. B Struct. Sci. 2008, 64, 702–707. [Google Scholar] [CrossRef]
- Ghaithan, H.M.; Qaid, S.M.H.; Alahmed, Z.A.; Hezam, M.; Lyras, A.; Amer, M. Anion Substitution Effects on the Structural, Electronic, and Optical Properties of Inorganic CsPb(I1-xBrx)3 and CsPb(Br1-xClx)3 Perovskites: Theoretical and Experimental Approaches. J. Phys. Chem. C 2021, 125, 886–897. [Google Scholar] [CrossRef]
- Whitcher, T.J.; Gomes, L.C.; Zhao, D.; Bosman, M.; Chi, X.; Wang, Y.; Carvalho, A.; Hui, H.K.; Chang, Q.; Breese, M.B.H.; et al. Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3. NPG Asia Mater. 2019, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Tuning of amplified spontaneous emission wavelength for green and blue light emission through the tunable composition of cspb(Br1-xClx)3 inorganic perovskite quantum dots. J. Phys. Chem. C 2021, 125, 9441–9452. [Google Scholar] [CrossRef]
- Park, B.W.; Seok, S.I. Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials. Adv. Mater. 2019, 31, 1805337. [Google Scholar] [CrossRef]
- McGovern, L.; Futscher, M.H.; Muscarella, L.A.; Ehrler, B. Understanding the Stability of MAPbBr3 versus MAPbI3: Suppression of Methylammonium Migration and Reduction of Halide Migration. J. Phys. Chem. Lett. 2020, 11, 7127–7132. [Google Scholar] [CrossRef]
- Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef] [Green Version]
- Dar, M.I.; Jacopin, G.; Meloni, S.; Mattoni, A.; Arora, N.; Boziki, A.; Zakeeruddin, S.M.; Rothlisberger, U.; Grätzel, M. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci. Adv. 2016, 2, e1601156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, P.S.; Herron, N.; Guise, W.E.; Page, K.; Cheng, Y.Q.; Milas, I.; Crawford, M.K. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide. Sci. Rep. 2016, 6, 35685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Soufiani, A.M.; Gentle, A.; Huang, F.; Ho-Baillie, A.; Green, M.A. Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry. Appl. Phys. Lett. 2016, 108, 61905. [Google Scholar] [CrossRef]
- Chen, C.; Hu, X.; Lu, W.; Chang, S.; Shi, L.; Li, L.; Zhong, H.; Han, J. Elucidating the phase transitions and temperature-dependent photolu-minescence of MAPbBr3 single crystal. J. Phys. D Appl. Phys. 2018, 51, 45105. [Google Scholar] [CrossRef]
- Lehmann, F.; Franz, A.; Daniel, M.T.; Levcenco, S.; Unold, T.; Taubert, A.; Schorr, S. The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray. RSC Adv. 2019, 9, 11151–11159. [Google Scholar] [CrossRef]
- Kong, W.; Ye, Z.; Qi, Z.; Zhang, B.; Wang, M.; Rahimi-Iman, A.; Wu, H. Photoluminescence behavior upon crystal-phase. Phys. Chem. Chem. Phys. 2015, 17, 16405–16411. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Seo, Y.-S.; Ahn, C.W.; Woo, W.S.; Kyhm, J.; Lee, S.A.; Kim, I.W.; Hwang, J. Temperature-dependent optical properties of hybrid organic–inorganic perovskite single crystals (CH3NH3PbI3 and CH3NH3PbBr3). J. Phys. D Appl. Phys. 2019, 52, 335302. [Google Scholar] [CrossRef]
- Schötz, K.; Askar, A.M.; Köhler, A.; Shankar, K.; Panzer, F. Investigating the Tetragonal-to-Orthorhombic Phase Transition of Methylammonium Lead Iodide Single Crystals by Detailed Photoluminescence Analysis. Adv. Opt. Mater. 2020, 8. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Solvent Effects on the Structural and Optical Properties of MAPbI3 Perovskite Thin Film for Photovoltaic Active Layer. Coatings 2022, 12, 549. [Google Scholar] [CrossRef]
- Fan, P.; Gu, D.; Liang, G.-X.; Luo, J.-T.; Chen, J.-L.; Zheng, Z.-H.; Zhang, D.-P. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 2016, 6, 29910. [Google Scholar] [CrossRef] [Green Version]
- Shen, H. Materials Defect step controlled growth of perovskite MAPbBr3 single crystal. J. Mater. Sci. 2019, 54, 11596–11603. [Google Scholar] [CrossRef]
- Fru, J.N.; Nombona, N.; Diale, M. Characterization of Thin MAPb(I1–xBrx)3 Alloy Halide Perovskite Films Prepared by Sequential Physical Vapor Deposition. Front. Energy Res. 2021, 9, 196. [Google Scholar] [CrossRef]
- Nath, D.; Singh, F.; Das, R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 2019, 239, 122021. [Google Scholar] [CrossRef]
- Saxena, R.; Kangsabanik, J.; Kumar, A.; Shahee, A.; Singh, S.; Jain, N.; Ghorui, S.; Kumar, V.; Mahajan, A.V.; Alam, A.; et al. Contrasting temperature dependence of the band gap in CH3NH3PbX3( X = I, Br, Cl ): Insight from lattice dilation and electron-phonon coupling. Phys. Rev. B 2020, 102, 81201. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Niu, J.; Zhang, H.; Lou, S.; Gao, C.; Zhan, Y.; Zhang, X.; Jin, Q.; Zheng, L. Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films. AIP Adv. 2018, 8, 095108. [Google Scholar] [CrossRef]
- Qaid, S.M.; Al Sobaie, M.S.; Khan, M.M.; Bedja, I.M.; Alharbi, F.H.; Nazeeruddin, M.K.; Aldwayyan, A.S. Band-gap tuning of lead halide perovskite using a single step spin-coating deposition process. Mater. Lett. 2015, 164, 498–501. [Google Scholar] [CrossRef]
- Pereira, L.; Ferreira, I.; Thomaz, M.P. Temperature effects on fluorescence quantum efficiency of 9,10-diphenylanthracene. J. Photochem. 1978, 9, 363–367. [Google Scholar] [CrossRef] [Green Version]
- An, P.; Thomson, S.; Tesa, M.; Gakamsky, A. Temperature-Dependent Absolute Photoluminescence Quantum Yield Measure-ments of a Halide Perovskite Temperature-Dependent Absolute Photoluminescence Quantum Yield Measurements of a Halide Perovskite. Edinburgh Instruments; Edinburgh Instruments: Livingston, UK, 2018; pp. 2–5. [Google Scholar]
- Agrawal, G.P.; Dutta, N.K. Recombination Mechanisms in Semiconductors. Long-Wavel. Semicond Lasers 1986, 70–141. [Google Scholar]
- Wehrenfennig, C.; Liu, M.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater. 2014, 2, 081513. [Google Scholar] [CrossRef]
- Phys, J.C.; Yamaguchi, A.; Uehara, R.; Yasuhara, S.; Hoshina, T.; Miyauchia, M. Temperature dependence on bandgap of semiconductor photocatalysts Temperature dependence on bandgap of semiconductor photocatalysts. J. Chem. Phys. 2020, 152, 231101. [Google Scholar]
- Guha, S.; Rice, J.D.; Yau, Y.T.; Martin, C.M.; Chandrasekhar, M.; Chandrasekhar, H.R.; Guentner, R.; Scanduicci de Freitas, P.; Scherf, U. Temperature dependent photolumi-nescence of organic semiconductors with varying backbone conformation. Phys. Rev. B 2003, 67, 125204. [Google Scholar] [CrossRef] [Green Version]
- Buckner, C.A.; Lafrenie, R.M.; Dénommée, J.A.; Caswell, J.M.; Want, D.A.; Gan, G.G. Structural Phase Transitions of Hybrid Perovskites CH3NH3PbX3 (X = Br, Cl) from Synchrotron and Neutron Diffraction Data. IntechOpen 2016, 11, 13. [Google Scholar]
- Tingting, Y.; Yan, J. Stability of CH3NH3PbBr3 and evolution of H-bonding during its polymorphic transformations. In Proceedings of the 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, 31 July 2017–4 August 2017. [Google Scholar]
- Ruf, F.; Aygüler, M.F.; Giesbrecht, N.; Rendenbach, B.; Magin, A.; Docampo, P.; Kalt, H.; Hetterich, M. Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)3 perovskites. APL Mater. 2019, 7, 031113. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yuan, X.; Jing, P.; Mechanics, F.; Ji, L. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv. 2016, 6, 78311–78316. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef]
- Park, Y.; Jana, A.; Myung, C.W.; Yoon, T.; Lee, G.; Kocher, C.C.; Ying, G.; Osokin, V.; Taylor, R.A.; Kim, K.S. Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Res. 2020, 13, 932–938. [Google Scholar] [CrossRef]
- Yuan, X.; Hou, X.; Li, J.; Qu, C.; Zhang, W.; Zhao, J.; Li, H. Thermal degradation of luminescence in inorganic perovskite CsPbBr3nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 8934–8940. [Google Scholar] [CrossRef] [PubMed]
- Ai, B.; Liu, C.; Deng, Z.; Wang, J.; Han, J.; Zhao, X. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. Phys. Chem. Chem. Phys. 2017, 19, 17349–17355. [Google Scholar] [CrossRef] [PubMed]
Compound | Peak (1) | Peak (2) | Peak (3) | |||
---|---|---|---|---|---|---|
2θ (deg) | FWHM (meV) | 2θ (deg) | FWHM (nm) | 2θ (deg) | FWHM (nm) | |
MAPbBr3 | 14.21 | 0.193 | 29.42 | 0.2 | 33.01 | 0.217 |
MAPb(Br0.75I0.25) | 14.08 | 0.19 | 29.24 | 0.20 | 32.84 | 0.24 |
MAPb(Br0.50I0.50) | 13.72 | 0.31 | 28.39 | 0.33 | 31.24 | 0.22 |
MAPb(Br0.25I0.75) | 13.43 | 0.24 | 27.82 | 0.26 | 31.87 | 0.33 |
MAPbI3 | 13.4 | 0.21 | 27.67 | 0.23 | 31.11 | 0.21 |
MAPb(BrxI1−x)3 | 1 | 0.75 | 0.50 | 0.25 | 0.00 |
---|---|---|---|---|---|
Crystallize size, D (nm) | 59 | 51.35 | 43.6 | 46.21 | 42.2 |
Micro strain × 10−3 | 1.08 | 1.13 | 2.3 | 2.4 | 0.71 |
Dislocation density (δ) × 10−3 (nm)−2 | 5.45 | 5.28 | 14.96 | 8.44 | 6.46 |
MAPb(BrxI1−x)3 | x Values | ||||
---|---|---|---|---|---|
1.00 | 0.75 | 0.50 | 0.25 | 0.00 | |
Energy bandgap (eV) at RT | 3.54 | 3.35 | 2.8 | 2.99 | 1.56 |
Peak Emission (nm) at RT | 541.45 | 715.85 | 728.2 | 743.39 | 765.85 |
MAPb(BrxI1−x)3 | 0 | 0.25 | 0.50 | 0.75 | 1 |
---|---|---|---|---|---|
The transition from (orthorhombic to tetragonal) phase | 163 ± 10 | 132 ± 10 | 122 ± 10 | 163 ± 10 | |
The transition from (tetragonal to cubic) phase | 330 ± 10 | 318 ± 10 | 312 ± 10 | 290 ± 10 | 263 ± 10 |
X | The Material | Activation Energy (meV) |
---|---|---|
0.00 | MAPbI3 | 47 |
0.50 | MAPb(Br0.50I0.50)3 | 67 |
1.00 | MAPbBr3 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bawazir, H.S.; Qaid, S.M.H.; Ghaithan, H.M.; AlHarbi, K.K.; Bin Ajaj, A.F.; Aldwayyan, A.S. Phase State Influence on Photoluminescence of MAPb(BrxI1−x)3 Perovskites towards Optimized Photonics Applications. Photonics 2023, 10, 21. https://doi.org/10.3390/photonics10010021
Bawazir HS, Qaid SMH, Ghaithan HM, AlHarbi KK, Bin Ajaj AF, Aldwayyan AS. Phase State Influence on Photoluminescence of MAPb(BrxI1−x)3 Perovskites towards Optimized Photonics Applications. Photonics. 2023; 10(1):21. https://doi.org/10.3390/photonics10010021
Chicago/Turabian StyleBawazir, Huda S., Saif M. H. Qaid, Hamid M. Ghaithan, Khulod K. AlHarbi, Abrar F. Bin Ajaj, and Abdullah S. Aldwayyan. 2023. "Phase State Influence on Photoluminescence of MAPb(BrxI1−x)3 Perovskites towards Optimized Photonics Applications" Photonics 10, no. 1: 21. https://doi.org/10.3390/photonics10010021
APA StyleBawazir, H. S., Qaid, S. M. H., Ghaithan, H. M., AlHarbi, K. K., Bin Ajaj, A. F., & Aldwayyan, A. S. (2023). Phase State Influence on Photoluminescence of MAPb(BrxI1−x)3 Perovskites towards Optimized Photonics Applications. Photonics, 10(1), 21. https://doi.org/10.3390/photonics10010021