Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Graphene Synthesis
2.3. Graphene Characterization
2.4. Electrochemical Analysis
3. Results and Discussion
3.1. Characterizations of Graphene Films
3.2. Electrochemical Analysis of Graphene Anodes
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar]
- Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Biswas, K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A.C. Production and processing of graphene and 2D crystals. Mater. Today 2012, 15, 564–589. [Google Scholar] [CrossRef]
- Kwak, Y.H.; Choi, D.S.; Kim, Y.N.; Kim, H.; Yoon, D.H.; Ahn, S.-S.; Yang, J.-W.; Yang, W.S.; Seo, S. Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Loan, P.T.K.; Hsu, C.-L.; Lee, Y.-H.; Tse-Wei Wang, J.; Wei, K.-H.; Lin, C.-T.; Li, L.-J. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens. Bioelectron. 2013, 41, 103–109. [Google Scholar] [CrossRef]
- Kim, H.; Bae, S.-H.; Han, T.-H.; Lim, K.-G.; Ahn, J.-H.; Lee, T.-W. Organic solar cells using CVD-grown graphene electrodes. Nanotechnology 2014. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Cardema, J.D.; Adams, P.M.; Kim, H.I.; Foran, B. Fabrication and Electrochemical Characterization of Single and Multi-Layer Graphene Anodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2012, 159, A752–A761. [Google Scholar] [CrossRef]
- Prasai, D.; Tuberquia, J.C.; Harl, R.R.; Jennings, G.K.; Rogers, B.R.; Bolotin, K.I. Graphene: Corrosion-Inhibiting Coating. ACS Nano 2012, 6, 1102–1108. [Google Scholar] [CrossRef]
- Singh Raman, R.K.; Chakraborty Banerjee, P.; Lobo, D.E.; Gullapalli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P.M.; Majumder, M. Protecting copper from electrochemical degradation by graphene coating. Carbon 2012, 50, 4040–4045. [Google Scholar] [CrossRef]
- Ji, H.; Hao, Y.; Ren, Y.; Charlton, M.; Lee, W.H.; Wu, Q.; Li, H.; Zhu, Y.; Wu, Y.; Piner, R.; Ruoff, R.S. Graphene Growth Using a Solid Carbon Feedstock and Hydrogen. ACS Nano 2011, 5, 7656–7661. [Google Scholar] [CrossRef]
- Li, Z.; Wu, P.; Wang, C.; Fan, X.; Zhang, W.; Zhai, X.; Zeng, C.; Li, Z.; Yang, J.; Hou, J. Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano 2011, 5, 3385–3390. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J.M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552. [Google Scholar] [CrossRef]
- Vijapur, S.H.; Wang, D.; Botte, G.G. Raw coal derived large area and transparent graphene films. ECS Solid State Lett. 2013, 2, M45–M47. [Google Scholar] [CrossRef]
- Ruan, G.; Sun, Z.; Peng, Z.; Tour, J.M. Growth of Graphene from Food, Insects, and Waste. ACS Nano 2011, 5, 7601–7607. [Google Scholar] [CrossRef]
- Jin, X.; Botte, G.G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures. J. Power Sources 2007, 171, 826–834. [Google Scholar] [CrossRef]
- Hesenov, A.; Meryemoglu, B.; Icten, O. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield. Int. J. Hydrogen Energy 2011, 36, 12249–12258. [Google Scholar] [CrossRef]
- Hesenov, A.; Kinik, H.; Puli, G.; Goezmen, B.; Irmak, S.; Erbatur, O. Electrolysis of coal slurries to produce hydrogen gas: Relationship between CO2 and H2 formation. Int. J. Hydrogen Energy 2011, 36, 5361–5368. [Google Scholar] [CrossRef]
- Yu, T.; Lv, S.; Zhou, W.; Cao, W.; Fan, C.Q.; Yin, R. Catalytic effect of K3Fe(CN)6 on hydrogen production from coal electro-oxidation. Electrochim. Acta 2012, 83, 485–489. [Google Scholar] [CrossRef]
- Jin, X.; Botte, G.G. Understanding the kinetics of coal electrolysis at intermediate temperatures. J. Power Sources 2010, 195, 4935–4942. [Google Scholar] [CrossRef]
- Botte, G.G. Pretreatment method for the synthesis of carbon nanotubes and carbon nanostructures from coal and carbon chars (Div. 2). U.S. Patent No. 8409305 B2, 2013. [Google Scholar]
- Botte, G.G. Pretreatment method for the synthesis of carbon nanotubes and carbon nanostructures from coal and carbon chars (Div. 1). U.S. Patent No. 8409305, 2013. [Google Scholar]
- Botte, G.G. Pretreatment method for the synthesis of carbon nanotubes and carbon nanostructures from coal and carbon chars. U.S. Patent No. 8029759, 2011. [Google Scholar]
- Reddy, A.L.M.; Srivastava, A.; Gowda, S.R.; Gullapalli, H.; Dubey, M.; Ajayan, P.M. Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano 2010, 4, 6337–6342. [Google Scholar] [CrossRef]
- Li, C.-L.; Sun, Q.; Jiang, G.-Y.; Fu, Z.-W.; Wang, B.-M. Electrochemistry and Morphology Evolution of Carbon Micro-net Films for Rechargeable Lithium Ion Batteries. J. Phys. Chem. C 2008, 112, 13782–13788. [Google Scholar] [CrossRef]
- Robertson, A.W.; Warner, J.H. Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils. Nano Lett. 2011, 11, 1182–1189. [Google Scholar] [CrossRef]
- Wei, D.; Haque, S.; Andrew, P.; Kivioja, J.; Ryhaenen, T.; Pesquera, A.; Centeno, A.; Alonso, B.; Chuvilin, A.; Zurutuza, A. Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. J. Mater. Chem. A 2013, 1, 3177–3181. [Google Scholar] [CrossRef]
- Potgieter-Vermaak, S.; Maledi, N.; Wagner, N.; Van Heerden, J.H.P.; Van Grieken, R.; Potgieter, J.H. Raman spectroscopy for the analysis of coal: a review. J. Raman Spectrosc. 2011, 42, 123–129. [Google Scholar] [CrossRef]
- De Abreu, Y.; Patil, P.; Marquez, A.I.; Botte, G.G. Characterization of electrooxidized Pittsburgh No. 8 Coal. Fuel 2006, 86, 573–584. [Google Scholar]
- Geng, D.; Wu, B.; Guo, Y.; Huang, L.; Xue, Y.; Chen, J.; Yu, G.; Jiang, L.; Hu, W.; Liu, Y. Uniform hexagonal graphene flakes and films grown on liquid copper surface. P. Natl. Acad. Sci. USA 2012, 109, 7992–7996. [Google Scholar]
- Fuchs, W.; Sandhoff, A.G. Theory of Coal Pyrolysis. Ind. Eng. Chem. 1942, 34, 567–571. [Google Scholar] [CrossRef]
- Miknis, F.P.; Turner, T.F.; Ennen, L.W.; Netzel, D.A. N.m.r. characterization of coal pyrolysis products. Fuel 1988, 67, 1568–1577. [Google Scholar] [CrossRef]
- Vijapur, S.H.; Wang, D.; Botte, G.G. The growth of transparent amorphous carbon thin films from coal. Carbon 2013, 54, 22–28. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, D.; Vijapur, S.H.; Botte, G.G. Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries. Photonics 2014, 1, 251-259. https://doi.org/10.3390/photonics1030251
Wang D, Vijapur SH, Botte GG. Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries. Photonics. 2014; 1(3):251-259. https://doi.org/10.3390/photonics1030251
Chicago/Turabian StyleWang, Dan, Santosh H. Vijapur, and Gerardine G. Botte. 2014. "Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries" Photonics 1, no. 3: 251-259. https://doi.org/10.3390/photonics1030251
APA StyleWang, D., Vijapur, S. H., & Botte, G. G. (2014). Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries. Photonics, 1(3), 251-259. https://doi.org/10.3390/photonics1030251