Comparison of Regularization Methods in Fluorescence Molecular Tomography
Abstract
:1. Introduction
2. Methodology
2.1. Forward Modeling
2.2. Non-Negative Regularized Least Squares
2.3. Optimization Transfer Algorithms
2.4. Regularization Parameter Selection and Image Quality Metrics
2.5. Numerical Simulations
2.6. Phantom Experiments
3. Results
3.1. Simulation Results for Small Targets
RegType | Reg λ | VR | Dice | CNR | MSE |
---|---|---|---|---|---|
5.0E-5 | 6.19 | 0.26 | 5.30 | 3.5E-3 | |
1.0E-11 | 6.05 | 0.27 | 5.36 | 3.5E-3 | |
5.9E-4 | 4.59 | 0.27 | 4.99 | 3.6E-3 | |
6E-4 | 1.25 | 0.31 | 4.42 | 3.6E-3 | |
1.0E-4 | 3.49 | 0.34 | 6.08 | 3.1E-3 | |
6.4E-5 | 2.61 | 0.33 | 5.72 | 3.1E-3 | |
3E-5 | 1.84 | 0.36 | 5.52 | 3.2E-3 | |
3.2E-6 | 2.13 | 0.36 | 5.38 | 3.3E-3 | |
1.3E-5 | 2.97 | 0.34 | 5.19 | 3.3E-3 |
Reg Type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reg λ’s | VR | Dice | CNR | MSE | Reg λ’s | VR | Dice | CNR | MSE | ||
2.0E-11, 5.9E-4 | 4.60 | 0.27 | 4.99 | 3.6E-3 | 5.0E-5, 6.0E-10 | 4.63 | 0.26 | 4.94 | 3.6E-3 | ||
3.0E-11, 6.0E-4 | 1.16 | 0.30 | 4.41 | 3.6E-3 | 4.9E-5, 6.1E-4 | 1.16 | 0.29 | 4.36 | 3.6E-3 | ||
1.0E-11, 1.0E-4 | 3.45 | 0.34 | 6.07 | 3.1E-3 | 4.9E-5, 1.1E-4 | 3.61 | 0.33 | 6.04 | 3.1E-3 | ||
1.0E-11, 6.4E-5 | 2.61 | 0.33 | 5.72 | 3.1E-3 | 4.9E-5, 6.4E-5 | 2.71 | 0.32 | 5.7 | 3.1E-3 | ||
2.0E-11, 3.0E-5 | 1.84 | 0.36 | 5.52 | 3.2E-3 | 4.9E-5, 3.0E-5 | 1.99 | 0.35 | 5.51 | 3.2E-3 | ||
1.0E-11, 3.2E-6 | 2.13 | 0.36 | 5.38 | 3.3E-3 | 4.9E-5, 3.2E-6 | 2.26 | 0.37 | 5.35 | 3.3E-3 | ||
3.0E-11, 1.4E-5 | 2.46 | 0.34 | 5.04 | 3.4E-3 | 4.9E-5, 1.4E-5 | 2.63 | 0.34 | 5.03 | 3.4E-3 |
3.2. Simulation Results for Large Target
Reg Type | Reg λ | VR | Dice | CNR | MSE |
---|---|---|---|---|---|
1.0E-3 | 0.51 | 0.68 | 7.3 | 9.2E-3 | |
1.0E-6 | 0.50 | 0.67 | 7.3 | 8.9E-3 | |
1.0E-3 | 0.61 | 0.76 | 6.9 | 1.0E-2 | |
1.0E-3 | 0.62 | 0.76 | 7.0 | 1.0E-2 | |
1.0E-3 | 0.63 | 0.77 | 7.3 | 9.1E-3 | |
1.0E-3 | 0.64 | 0.78 | 7.6 | 8.3E-3 | |
5.0E-4 | 0.65 | 0.79 | 7.5 | 8.4E-3 | |
1.0E-4 | 0.67 | 0.79 | 7.5 | 8.4E-3 | |
1.0E-3 | 0.69 | 0.81 | 7.7 | 7.7E-3 |
Reg Type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reg λ’s | VR | Dice | CNR | MSE | Reg λ’s | VR | Dice | CNR | MSE | ||
1.0E-6, 1.0E-5 | 0.74 | 0.83 | 6.74 | 1.2E-2 | 1.0E-3, 1.0E-3 | 0.68 | 0.81 | 6.95 | 1.1E-2 | ||
5.0E-7, 1.0E-3 | 0.67 | 0.80 | 7.14 | 1.0E-2 | 1.0E-2, 1.0E-4 | 0.69 | 0.81 | 7.74 | 7.7E-3 | ||
1.0E-7, 1.0E-3 | 0.64 | 0.78 | 7.37 | 8.9E-4 | 1.0E-3, 1.0E-3 | 0.68 | 0.81 | 7.35 | 9.1E-3 | ||
5.0E-7, 5.0E-4 | 0.68 | 0.81 | 7.40 | 9.0E-3 | 1.0E-4, 1.0E-3 | 0.64 | 0.78 | 7.59 | 8.2E-3 | ||
1.0E-7, 5.0E-3 | 0.66 | 0.80 | 7.57 | 8.2E-3 | 1.0E-3, 1.0E-3 | 0.67 | 0.80 | 8.12 | 7.2E-3 | ||
5.0E-7, 1.0E-4 | 0.70 | 0.82 | 7.65 | 8.0E-3 | 1.0E-4, 1.0E-4 | 0.69 | 0.80 | 7.47 | 8.4E-3 | ||
5.0E-7, 1.0E-3 | 0.70 | 0.82 | 8.01 | 7.2E-3 | 1.0E-3, 1.0E-3 | 0.72 | 0.84 | 7.84 | 7.4E-3 |
3.3. Phantom Experimental Results
Reg Type | Reg λ | VR | Dice | CNR |
---|---|---|---|---|
1.0E-6 | 4.48 | 0.28 | 5.12 | |
3.0E-9 | 4.58 | 0.27 | 4.90 | |
9.0E+3 | 2.50 | 0.33 | 6.62 | |
1.0E+5 | 1.67 | 0.32 | 6.36 | |
4.0E+6 | 2.05 | 0.43 | 8.60 | |
5.0E+7 | 1.52 | 0.39 | 7.74 | |
6.0E+8 | 1.22 | 0.37 | 7.17 | |
1.0E+10 | 1.92 | 0.34 | 7.26 | |
9.0E+11 | 1.73 | 0.34 | 7.03 |
3.4. Regularization Parameter Selection
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cherry, S.R. In vivo molecular and genomic imaging: New challenges for imaging physics. Phys. Med. Biol. 2004, 49, R13–R48. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 2005, 23, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, A.; Arsenin, V.Y. Solutions of Ill-Posed Problems; WH Winston: Washington, DC, USA, 1977; p. 330. [Google Scholar]
- Hyde, D.; Miller, E.L.; Brooks, D.H.; Ntziachristos, V. Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans. Med. Imaging 2010, 29, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, J.; Svensson, J.; Andersson-Engels, S. Spatially varying regularization based on spectrally resolved fluorescence emission in fluorescence molecular tomography. Opt. Express 2007, 15, 574–13. [Google Scholar] [CrossRef]
- Pogue, B.W.; McBride, T.O.; Prewitt, J.; Österberg, U.L.; Paulsen, K.D. Spatially variant regularization improves diffuse optical tomography. Appl. Opt. 1999, 38, 2950–2961. [Google Scholar] [CrossRef] [PubMed]
- Bloch, S.; Lesage, F.; McIntosh, L.; Gandjbakhche, A.; Liang, K.; Achilefu, S. Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice. J. Biomed. Opt. 2005, 10, 054003–054003. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Tung, C.H.; Mahmood, U.; Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 1999, 17, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, B.; Liu, F.; Luo, J.; Bai, J. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient. Opt. Lett. 2013, 38, 3696–3699. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Tian, J.; Zhu, S.; Feng, J.; Qin, C.; Zhang, B.; Yang, X. A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization. Opt. Express 2010, 18, 8630–8646. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Chen, D.; Li, W.; Zhu, S.; Wang, X.; Liang, J.; Tian, J. Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: A comparative study. J. Biomed. Opt. 2013, 18, 056013. [Google Scholar] [CrossRef] [PubMed]
- Behrooz, A.; Zhou, H.M.; Eftekhar, A.A.; Adibi, A. Total variation regularization for 3D reconstruction in fluorescence tomography: Experimental phantom studies. Appl. Opt. 2012, 51, 8216–8227. [Google Scholar] [CrossRef] [PubMed]
- Dutta, J.; Ahn, S.; Li, C.; Cherry, S.R.; Leahy, R.M. Joint L1 and total variation regularization for fluorescence molecular tomography. Phys. Med. Biol. 2012, 57, 1459–1476. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Li, C. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement. Phys. Med. Biol. 2014, 59. (In Press.). [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Shaw, C.; Manjappa, R.; Kanhirodan, R.; Yalavarthy, P.K. Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 6800609. [Google Scholar] [CrossRef]
- Okawa, S.; Hoshi, Y.; Yamada, Y. Improvement of image quality of time-domain diffuse optical tomography with Lq sparsity regularization. Biomed. Opt. Express 2011, 2, 3334–3348. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 2003, 9, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Royant, A.; Lin, M.Z.; Aguilera, T.A.; Lev-Ram, V.; Steinbach, P.A.; Tsien, R.Y. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 2009, 324, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41–R93. [Google Scholar] [CrossRef]
- Li, C.; Mitchell, G.S.; Dutta, J.; Ahn, S.; Leahy, R.M.; Cherry, S.R. A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design. Opt. Express 2009, 17, 7571–7585. [Google Scholar] [CrossRef] [PubMed]
- Correia, T.; Gibson, A.; Schweiger, M.; Hebden, J. Selection of regularization parameter for optical topography. J. Biomed. Opt. 2009, 14, 034044. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Alexandrakis, G.; Liu, H. Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution. Appl. Opt. 2009, 48, 2496–2504. [Google Scholar] [CrossRef] [PubMed]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Song, X.; Pogue, B.W.; Jiang, S.; Doyley, M.M.; Dehghani, H.; Tosteson, T.D.; Paulsen, K.D. Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Opt. 2004, 43, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Dogdas, B.; Stout, D.; Chatziioannou, A.F.; Leahy, R.M. Digimouse: A 3D whole body mouse atlas from CT and cryosection data. Phys. Med. Biol. 2007, 52, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, G.; Qi, J.; Cherry, S.R. Three-dimensional fluorescence optical tomography in small-animal imaging using simultaneous positron-emission-tomography priors. Opt. Lett. 2009, 34, 2933–2935. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, Y.; Mitchell, G.S.; Cherry, S.R. Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system. J. Nucl. Med. 2011, 52, 1268–1275. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.R.; Lange, K. A tutorial on MM algorithms. Am. Stat. 2004, 58, 30–37. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhu, D.; Zhao, Y.; Baikejiang, R.; Yuan, Z.; Li, C. Comparison of Regularization Methods in Fluorescence Molecular Tomography. Photonics 2014, 1, 95-109. https://doi.org/10.3390/photonics1020095
Zhu D, Zhao Y, Baikejiang R, Yuan Z, Li C. Comparison of Regularization Methods in Fluorescence Molecular Tomography. Photonics. 2014; 1(2):95-109. https://doi.org/10.3390/photonics1020095
Chicago/Turabian StyleZhu, Dianwen, Yue Zhao, Reheman Baikejiang, Zhen Yuan, and Changqing Li. 2014. "Comparison of Regularization Methods in Fluorescence Molecular Tomography" Photonics 1, no. 2: 95-109. https://doi.org/10.3390/photonics1020095
APA StyleZhu, D., Zhao, Y., Baikejiang, R., Yuan, Z., & Li, C. (2014). Comparison of Regularization Methods in Fluorescence Molecular Tomography. Photonics, 1(2), 95-109. https://doi.org/10.3390/photonics1020095