Challenges in Phosphorus Removal from Eutrophic Waters Using Adsorption: A Laboratory Comparison of Commercial and Moringa-Derived Adsorbents
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Adsorbent and Adsorbate
2.2. Adsorption Tests
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wetzel, R.G. Limnology Lake and Reservoir Ecosystems; Academic Press: San Diego, CA, USA, 2001; pp. 331–394. [Google Scholar]
- Sonarghare, P.C.; Masram, S.C.; Sonparote, U.R.; Khaparde, K.P.; Kharkate, S.K.; Shinkhede. Causes and effects of eutrophication on aquatic life (a review). Int. J. Environ. 2020, XI (SP2), 213–218. Available online: https://eoi.citefactor.org/10.11208/essence.20.11.SP2.147 (accessed on 5 August 2024).
- Hatvani, I.G.; De Barros, D.; Deganutti, V.; Tanos, P.; Kovács, J.; Székely, I.; Kovács, C.; Clement, A. Spatiotemporal changes and drivers of trophic status over three decades in the largest shallow lake in Central Europe, Lake Balaton. Ecol. Eng. 2020, 151, 105861. [Google Scholar] [CrossRef]
- Santos, E.O.; Medeiros, P.R.P. Anthropic action and the eutrophization process in the Paraíba do Meio River. Soc. Nat. 2023, 35, e66441. Available online: https://seer.ufu.br/index.php/sociedadenatureza/article/view/66441 (accessed on 5 August 2024).
- Chen, P.; Ye, G.; Xu, X.; Xi, W.; Dong, X. Water environmental capacity analysis and eutrophication assessment of water-supplied reservoirs. Desalin. Water Treat. 2024, 317, 100200. [Google Scholar] [CrossRef]
- Paul, B.; Bhattacharya, S.S.; Gogoi, N. Primacy of ecological engineering tools for combating eutrophication: An ecohydrological assessment pathway. Sci. Total Environ. 2021, 762, 143171. [Google Scholar] [CrossRef] [PubMed]
- Sonarghare, P.C.; Bhatkar, V.R.; Sawant, A.P. A review on effects of eutrophication in aquatic ecosystem. Int. J. Environ. 2024, 14, 65362–65369. [Google Scholar]
- Loewen, C.J.G.; Jackson, D.J. Salinization, warming, and loss of water clarity inhibit vertical mixing of small urban ponds. Limnol. Oceanogr. Lett. 2023, 9, 155–164. [Google Scholar] [CrossRef]
- Hamdan, L.J.; Wickland, K.P. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnol. Oceanogr. 2016, 61, S3–S12. [Google Scholar] [CrossRef]
- Sun, H.L.; Lu, X.X.; Yu, R.; Yang, J.; Liu, X.; Cao, Z.; Zhan, Z.; Li, M.; Geng, Y. Eutrophication decreased CO2 but increased CH4 emissions from lake: A case study of a shallow Lake Ulansuhai. Water Res. 2021, 201, 117363. [Google Scholar] [CrossRef]
- Svirčev, Z.; Lalić, D.; Bojadžija Savić, G.; Tokodi, N.; Drobac Backović, D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Pokhrel, S.; Ghimire, N.P.; Rai, S.K. Seasonal Variation of Algal Diversity with Reference to Water Quality in Jagadishpur Reservoir, Nepal. Limnol. Rev. 2021, 21, 189–199. [Google Scholar] [CrossRef]
- Usman, M.O.; Aturagaba, G.; Ntale, M.; Nyakairu, G.W. A review of adsorption techniques for removal of phosphates from wastewater. Water Sci. Technol. 2022, 86, 3113–3132. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations Publications: Geneva, Switzerland, 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 14 August 2024).
- Bicudo, D.C.; Zanon, J.E.; Ferragut, C.; Crossetti, L.; Faustino, S.; Bicudo, C.E.M. Garças Reservoir trophic state dynamics: A 20-year synthesis. Hoehnea 2020, 47, e722019. [Google Scholar] [CrossRef]
- Ayele, H.S.; Atlabachew, M. Review of characterization, factors, impacts, and solutions of Lake eutrophication: Lesson for lake Tana, Ethiopia. Environ. Sci. Pollut. Res. 2021, 28, 14233–14252. [Google Scholar] [CrossRef]
- Cavalcante, H.; Araújo, F.B.; Barbosa, V.; De Lucena, J.E. Internal phosphorus loading potential of a semiarid reservoir: An experimental study. Acta Limnol. Bras. 2021, 33, e6. [Google Scholar] [CrossRef]
- Riza, M.; Ehsan, M.N.; Pervez, M.N.; Khyum, M.M.O.; Cai, Y.; Naddeo, V. Control of eutrophication in aquatic ecosystems by sustainable dredging: Effectiveness, environmental impacts, and implications. Case Stud. Chem. Environ. Eng. 2023, 7, 100297. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, P.; Zhao, S.; Kang, S.; Wang, P.; Zhou, M.; Lyu, J. Control and remediation methods for eutrophic lakes in the past 30 years. Water Sci. Technol. 2020, 81, 1099–1113. [Google Scholar] [CrossRef]
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
- Paixão, G.C.; Schneider, R.M.; Bongiovani, M.C.; Amaral, A.G.; Boina, R.F. Removal of phosphorus and nitrogen from swine manure using a natural coagulant. Eng. Sanit. Ambient. 2023, 28, e20230032. [Google Scholar]
- Pourhakkak, P.; Taghizadeh, A.; Taghizadeh, M.; Ghaedi, M.; Haghdoust, S. Fundamentals of adsorption technology. In Interface Science and Technology; Ghaedi, M., Ed.; Elsevier: London, UK, 2021; pp. 1–70. [Google Scholar] [CrossRef]
- Recepoglu, Y.K.; Goren, A.Y.; Orooji, Y.; Khataee, A. Carbonaceous materials for removal and recovery of phosphate species: Limitations, successes and future improvement. Chemosphere 2022, 287, 132177. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Mckay, G.; Kochkodan, V.; Muataz, A.A.; Al-Ansari, T. A state-of-the-art review on phosphate removal from water by biochars. Chem. Eng. J. 2021, 409, 128211. [Google Scholar] [CrossRef]
- Rani, A.; Husain, K.; Kumolosasi, E. Moringa genus: A review of phytochemistry and pharmacology. Front. Pharmacol. 2018, 9, 108. [Google Scholar] [CrossRef]
- Pareek, A.; Pant, M.; Gupta, M.M.; Kashania, P.; Ratan, Y.; Jain, V.; Pareek, A.; Chuturgoon, A.A. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int. J. Mol. Sci. 2023, 24, 2098. [Google Scholar] [CrossRef] [PubMed]
- Tambone, F.; Pradella, M.; Bedussi, F.; Adani, F. Moringa oleifera Lam. as an energy crop for biogas production in developing countries. Biomass Conv. Bioref. 2020, 10, 1083–1089. [Google Scholar] [CrossRef]
- Bancessi, A.; Pinto, M.M.F.; Duarte, E.; Catarino, L.; Nazareth, T. The antimicrobial properties of Moringa oleifera Lam. for water treatment: A systematic review. SN Appl. Sci. 2020, 2, 323. [Google Scholar] [CrossRef]
- Hendrasarie, N.; Maria, S.H. Combining grease trap and Moringa oleifera as adsorbent to treat wastewater restaurant. S. Afr. J. Chem. Eng. 2021, 37, 196–205. [Google Scholar] [CrossRef]
- Lopes, C.A.; Roledo, C.; Reis, A.G. Moringa oleifera seed husks for methylene blue dye adsorption: Kinetic, equilibrium, and thermodynamic analyses. Rev. Ambiente Água 2022, 17, e2812. [Google Scholar] [CrossRef]
- Orabi, A.H.; Abd El-Mageed, Y.M.; Salem, H.M.; Falia, N.I.; Atrees, M.S. Functionalization of environmental-friendly biosorbent for high-performance removal of uranium from waste solution. Environ. Technol. 2025, 11, 1–20. [Google Scholar] [CrossRef]
- Maina, I.W.; Obuseng, V.; Nareetsile, F. Use of Moringa oleifera (moringa) seed pods and Sclerocarya birrea (Morula) nut shells for removal of heavy metals from wastewater and borehole water. J. Chem. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Al Syouf, M.Q. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chem. Eng. 2015, 3, 775–784. [Google Scholar] [CrossRef]
- Tavares, F.O.; Pinto, L.; Moraes, A.; Bassetti, F.D.J.; Vieira, M.F.; Bergamasco, R.; Vieira, A.M.S. Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb (II) removal from contaminated water. Environ. Technol. 2017, 38, 3145–3155. [Google Scholar] [CrossRef] [PubMed]
- Shirani, Z.; Santhosh, C.; Iqbal, J.; Bhatnagar, A. Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants. J. Environ. Manag. 2018, 227, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Viotti, P.; Martins Moreira, W.; Santos, O.; Bergamasco, R.; Vieira, A.; Vieira, M. Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. J. Clean. Prod. 2019, 219, 809–817. [Google Scholar] [CrossRef]
- Coldebella, P.F.; Valverde, K.C.; Yamaguchi, N.U.; Ferreira, M.E.C.; Camacho, F.P.; Silva, M.F.; Bittencourt, P.R.S.; Fagundes-Klen, M.R.; Bergamasco, R. Exploring the eco-friendly potential of Moringa oleifera parts as biosorbents for atrazine removal. Int. J. Environ. Sci. Technol. 2024, 21, 6445–6458. [Google Scholar] [CrossRef]
- Noor, A.; Ullah, R.; Tuzen, M.; Hassan, A.; Ullah, S. Silver-coated activated carbon nanocomposite by Moringa oleifera for dye removal by multivariate optimization approach. Biomass Conv. Bioref. 2024, 14, 17971–17983. [Google Scholar] [CrossRef]
- Akhtar, M.; Hasany, S.M.; Bhanger, M.; Iqbal, S. Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions. J. Hazard. Mater. 2007, 141, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Hasany, S.M.; Bhanger, M.; Iqbal, S. Low cost sorbent for the removal of methyl parathion pesticide from aqueous solution. Chemosphere 2007, 66, 1829–1838. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Batista, G.S.; Roledo, C.; Odjegba, E.E.; Fiore, F.A.; Moruzzi, R.B.; Reis, A.G.d. Moringa oleifera seed addition prior to sludge thickening for supernatant quality improvement: Analyses of clarification performance and toxicity. Sustainability 2023, 15, 7288. [Google Scholar] [CrossRef]
- Chales, G.G.; Tihameri, B.S.; Milhan, N.V.M.; Koga-Ito, C.Y.; Antunes, M.L.P.; Reis, A.G.d. Impact of Moringa oleifera seed-derived coagulants processing steps on physicochemical, residual organic, and cytotoxicity properties of treated water. Water 2022, 14, 2058. [Google Scholar] [CrossRef]
- Bispo, M.D.S.; Santos, J.P.L.; Santos, L.C.L.; Freitas, L.D.S.; Bispo, D.F.; Silva, G.F. Synthesis and characterization of activated carbon of Moringa oleifera Lam pod and evaluation of its performance in the removal of oils and greases. J. Environ. Chem. Eng. 2021, 9, 105965. [Google Scholar] [CrossRef]
- Raji, Y.; Nadi, A.; Mechnou, I.; Saadouni, M.; Cherkaoui, O.; Zyade, S. High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study. Diam. Relat. Mater. 2023, 135, 109834. [Google Scholar] [CrossRef]
- Sharma, R.D.; Chouksey, G.; Suparna, S.; Shweta, K.A.; Singh, A. Drumstick activated charcoal tablets: Potential biosorbent material and its application to remove heavy metals via MATLAB assisted paper-based sensor. Mater. Today Proc. 2021, 46, 6382–6387. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T.; Hashim, R.; Said, N.; Akhtar, M.N.; Mohamad-Saleh, J.; Sulaiman, O. Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surf. Interfaces 2018, 11, 1–13. [Google Scholar] [CrossRef]
- US EPA Method 200.7. Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; Environmental Protection Agency: Cincinnati, OH, USA, 1994.
- Morettin, P.; Bussab, W. Estatística Básica, 10th ed.; Saraiva Educação SA: São Paulo, Brasil, 2017; p. 557. [Google Scholar]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Over the adsorption in solution. J. Phys Chem. 1906, 57, 385–470. [Google Scholar]
- Hwang, S.J. Eutrophication and the ecological health risk. Int. J. Environ. Res. Public Health 2020, 17, 6332. [Google Scholar] [CrossRef]
- Suresh, K.; Tang, T.; van Vliet, M.T.H.; Bierkens, M.F.P.; Strokal, M.; Sorger-Domenigg, F.; Wada, Y. Recent advancement in water quality indicators for eutrophication in global freshwater lakes. Environ. Res. Lett. 2023, 18, 063004. [Google Scholar] [CrossRef]
- Gao, F.; Shi, W.; Wang, Z. Selective phosphorus removal from wastewater using graphene aerogel loaded with ferrocene-polyaniline: Synergetic adsorption and electrochemically mediated oxidation. ACS EST Water 2022, 2, 2602–2612. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.-H.; Yuan, J.; Li, Q.; Qi, L.; Wang, H. Performance and mechanism of phosphorus adsorption removal from wastewater by a Ce-Zr-Al composite adsorbent. Environ. Sci. Pollut. Res. 2023, 30, 79258–79268. [Google Scholar] [CrossRef]
- Sengupta, S.; Pandit, A. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res. 2011, 45, 3318–3330. [Google Scholar] [CrossRef]
- Zhang, L.; Dan, H.; Bukasa, O.T.; Song, L.; Liu, Y.; Wang, L.; Li, J. Low-cost efficient magnetic adsorbent for phosphorus removal from water. CS Omega 2020, 5, 25326–25333. [Google Scholar] [CrossRef]
- Fan, X.; Wu, Y.; He, Y.; Liu, H.; Guo, J.; Li, B.; Peng, H. Efficient removal of phosphorus by adsorption. phosphorus, sulfur, and silicon and the related. Elements 2022, 198, 375–384. [Google Scholar] [CrossRef]
- Gómez-Carnota, D.; Barriada, J.L.; Rodríguez-Barro, P.; Sastre de Vicente, M.E.; Herrero, R. Sustainable Low-Cost Phosphorus Recovery Using Nanostructured Materials with Reusability Potential. Nanomaterials 2023, 13, 1167. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.K.; Moustafa, A.F.; Aboud, A.A.; Halim, K.S.A. Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J. Mater. Res. Technol. 2019, 8, 1798–1808. [Google Scholar] [CrossRef]
- Paliwal, R.; Sharma, V.; Pracheta, A. Review on horse radish tree (Moringa oleifera): A multipurpose tree with high economic and commercial importance. Asian J. Biotechnol. 2011, 3, 317–328. [Google Scholar] [CrossRef]
- Singh, A.K.; Rana, H.K.; Tshabalala, T.; Kumar, R.; Gupta, A.; Ndhlala, A.R.; Pandey, A.K. Phytochemical, nutraceutical and pharmacological attributes of a functional crop Moringa oleifera Lam: An overview. S. Afr. J. Bot. 2020, 129, 209–220. [Google Scholar] [CrossRef]
- Srivastava, S.; Pandey, V.K.; Dash, K.K.; Dayal, D.; Wal, P.; Debnath, B.; Singh, R.; Dar, A.H. Dynamic bioactive properties of nutritional superfood Moringa oleifera: A comprehensive review. J. Agric. Food Res. 2023, 14, 100860. [Google Scholar] [CrossRef]
- Benettayeb, A.; Usman, M.; Tinashe, C.C.; Adam, T.; Haddou, B. A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. Environ. Sci. Pollut. Res. 2022, 29, 48185–48209. [Google Scholar] [CrossRef]
- Subha, E.; Sasikala, S.; Muthuraman, G. Removal of phosphate from wastewater using natural adsorbents. Int. J. ChemTech Res. 2015, 7, 3095–3099. [Google Scholar]
- Sané, N.; Sivalingam, P.; Koželuh, M.; Mbengue, M.; Stoll, S.; Poté, J.; Le Coustumer, P. Effect of Moringa oleifera seeds on the removal of pathogens and pharmaceutical residues in a domestic wastewater treatment plant by an interdisciplinary approach. Environ. Sci. Pollut. Res. Int. 2024, 31, 65123–65136. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, R.F.; Lima, A.C.A.D.; Vidal, C.B.; Melo, D.d.Q.; Raulino, G.S.C. Adsorção: Aspectos Teóricos E Aplicações Ambientais, 2nd ed.; Imprensa Universitária: Fortaleza, Brasil, 2014; p. 256. [Google Scholar]
- Xu, X.; Gao, B.; Wang, W.; Yue, Q.; Wang, Y.; Ni, S. Adsorption of phosphate from aqueous solutions onto modified wheat residue: Characteristics, kinetic and column studies. Colloids Surf. B. Biointerfaces 2009, 70, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.; Chhoden, K.; Ravindra, K. Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. J. Clean. Prod. 2016, 129, 673–680. [Google Scholar] [CrossRef]
- Xu, C.; Feng, Y.; Li, H.; Yang, Y.; Wu, R. Research progress of phosphorus adsorption by attapulgite and its prospect as a filler of constructed wetlands to enhance phosphorus removal. J. Environ. Chem. Eng. 2022, 10, 108748. [Google Scholar] [CrossRef]
- Paul, P.; Parbat, S.; Aditya, G. Phosphate ion removal from aqueous solution using snail shell dust: Biosorption potential of waste shells of edible snails. RSC Adv. 2022, 12, 30011–30023. [Google Scholar] [CrossRef]
- Abdullah, N.S.; Hussin, M.H.; Sharifuddin, S.S.; Yusoff, M.A.M. Preparation and characterization of activated carbon from Moringa oleifera seed pod. Sci. Int. 2017, 29, 7–11. Available online: https://www.researchgate.net/publication/315838447 (accessed on 19 August 2024).
- Tolentino Brandão, A.C.; Queiroz, V.; Campos Silva, R.G. Síntese e caracterização de carvão ativado quimicamente com H3PO4 e NaOH a partir da casca de pequi (Caryocar brasiliense). Braz. J. Dev. 2020, 6, 60945–60962. [Google Scholar] [CrossRef]
- Barajas, J.R.; Pagsuyoin, S.; Latayan, J. Simultaneous removal of anions using Moringa-functionalized adsorbents. In Proceedings of the IEEE Systems and Information Engineering Design Conference (SIEDS ‘16), Charlottesville, VA, USA, 29 April 2016; IEEE: Charlottesville, VA, USA, 2016; pp. 12–15. [Google Scholar] [CrossRef]
- Ahmad, S.; Pasha, T.; Mehmood, S.; Hussain, K.; Shaheen, M.; Ahmad, S. Effect of Moringa oleifera (Lam.) pods as feed additive on egg antioxidants, chemical composition and performance of commercial layers. S. Afr. J. Anim. Sci. 2017, 47, 864–874. Available online: https://hdl.handle.net/10520/EJC-af2e44d20 (accessed on 19 August 2024).
- Brilhante, R.S.; Sales, J.A.; Vandbergue, V.S.P.; Castelo-Branco, D.D.S.C.M.; Cordeiro, R.D.A.; Sampaio, C.M.D.S.; Paiva, M.D.A.N.; Santos, J.B.F. Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population. Asian Pac. J. Trop. Biomed. 2017, 10, 621–630. [Google Scholar] [CrossRef]
- Yadav, L.P.; Gangadhara, K.; Apparao, V.V. Evaluation of Moringa oleifera (drumstick) variety Thar Harsha under rainfed semi-arid conditions for growth, yield and quality along with antioxidant potentiality and nutrient content. S. Afr. J. Bot. 2022, 148, 112–122. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Boguhn, J.; Schollenberger, M.; Rodehutscord, M. Effects of elevation and season on nutrient composition of leaves and green pods of Moringa stenopetala and Moringa oleifera. Agrofor. Syst. 2012, 86, 505–518. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness. 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Ali, M.Y.; Khalil, M.I.; Jahan, F.N.; Hossain, M.B.; Samanta, A.K. A review on nutritional attributes, therapeutic applications and value-added product generation: A review on nutritional attributes of Moringa oleifera. SAARC J. Agri. 2022, 20, 1–15. Available online: https://www.banglajol.info/index.php/SJA/article/view/63447 (accessed on 11 November 2024).
Real Masses of the Adsorbents (g) | Adsorbent Dosage (g L−1) | Phosphorus Concentration (mg·L−1) | ||
---|---|---|---|---|
PAC | V-MOH300 | PAC | V-MOH300 | |
0.0000 (Control) | 0.0 | 0.23 | ||
0.0000 (Control) | 0.23 | |||
0.0000 (Control) | 0.24 | |||
0.0549 | 0.0551 | 0.5 | 0.20 | 2.42 |
0.0555 | 0.0554 | 0.33 | 2.29 | |
0.0550 | 0.0550 | 0.34 | 2.31 | |
0.0881 | 0.0888 | 0.8 | 0.30 | 3.63 |
0.0886 | 0.0884 | 0.38 | 3.28 | |
0.0880 | 0.0882 | 0.37 | 3.61 | |
0.1101 | 0.1107 | 1.0 | 0.33 | 4.18 |
0.1103 | 0.1104 | 0.37 | 3.96 | |
0.1098 | 0.1100 | 0.40 | 4.44 | |
0.1431 | 0.1433 | 1.3 | 0.37 | 5.33 |
0.1431 | 0.1429 | 0.96 | 5.22 | |
0.1429 | 0.1431 | 0.42 | 5.88 | |
0.1871 | 0.1871 | 1.7 | 0.66 | 6.73 |
0.1871 | 0.1876 | 0.45 | 6.63 | |
0.1873 | 0.1873 | 0.46 | 7.59 | |
0.2208 | 0.2200 | 2.0 | 0.45 | 8.03 |
0.2205 | 0.2206 | 0.47 | 7.80 | |
0.2198 | 0.2201 | 0.47 | 9.30 |
Real Masses of the Adsorbents (g) | Adsorbent Dosage (g L−1) | Phosphorus Concentration (mg·L−1) | ||
---|---|---|---|---|
PAC | V-MOH300 | 0.0 | PAC | V-MOH300 |
0.0000 (Control) | 0.01 | |||
0.0000 (Control) | 0.01 | |||
0.0000 (Control) | 0.01 | |||
0.2200 | 0.2209 | 2.0 | 0.24 | 10.82 |
0.2204 | 0.2210 | 0.26 | 7.81 | |
0.2201 | 0.2206 | 0.26 | 8.09 |
Adsorbate | Adsorbent Dosage (g L−1) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Adsorbate | |||||||||
Phosphorus Solution (0.210 mg·L−1) | Deionized Water | ||||||||
PAC | 0.5 | 0.8 | 1.0 | 1.3 | 1.7 | 2.0 | 0.0 | 2.0 | |
Phosphorus solution (0.210 mg·L−1) | 0.0 | 0.966 | 0.405 | 0.254 | 0.009 | 0.001 | 0.007 | 0.009 | 1.000 |
0.5 | ─ | 0.954 | 0.845 | 0.082 | 0.006 | 0.064 | 0.001 | 0.998 | |
0.8 | ─ | 1.000 | 0.516 | 0.064 | 0.441 | 0.001 | 0.633 | ||
1.0 | ─ | 0.709 | 0.117 | 0.633 | 0.001 | 0.441 | |||
1.3 | ─ | 0.919 | 1.000 | 0.001 | 0.020 | ||||
1.7 | ─ | 0.954 | 0.001 | 0.001 | |||||
2.0 | ─ | 0.001 | 0.002 | ||||||
Deionized water | 0.0 | ─ | 0.004 | ||||||
2.0 | ─ | ||||||||
V-MOH300 | 0.5 | 0.8 | 1.0 | 1.3 | 1.7 | 2.0 | 0.0 | 2.0 | |
Phosphorus solution (0.210 mg·L−1) | 0.0 | 0.022 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.009 | 0.001 |
0.5 | ─ | 0.465 | 0.057 | 0.001 | 0.001 | 0.001 | 0.010 | 0.001 | |
0.8 | ─ | 0.927 | 0.037 | 0.001 | 0.001 | 0.001 | 0.001 | ||
1.0 | ─ | 0.349 | 0.002 | 0.001 | 0.001 | 0.001 | |||
1.3 | ─ | 0.184 | 0.001 | 0.001 | 0.001 | ||||
1.7 | ─ | 0.258 | 0.001 | 0.044 | |||||
2.0 | ─ | 0.001 | 0.983 | ||||||
Deionized water | 0.0 | ─ | 0.001 | ||||||
2.0 | ─ |
Absorbents | Initial Phosphorus Concentration (mg·L−1) | qmax (mg g−1) | Reference |
---|---|---|---|
Ce-Zr-Al composite | 0.5–100 | 73.51 | Wang et al. (2023 [55] |
Ball-milled magnetic sphere | 10–20 | 16.47 | Zhang et al. (2020) [57] |
Granulated silica pellets -Fe | 3–130 | 278 | Gómez-Carnota et al. (2023) [59] |
Rice husk ash | 10 | 0.736 | Mor et al. (2016) [69] |
Filopaludina bengalensis shell | 100–1200 | 62.50 | Paul et al. (2022) [71] |
Phila globosa shell | 100–1200 | 66.66 | Paul et al. (2022) [71] |
PAC | 0.210 | −0.06 | This study |
Moringa oleifera pods | 0.210 | −1.79 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque, D.R.; Reis, A.G.d.; Formiga, J.K.S.; Rodgher, S. Challenges in Phosphorus Removal from Eutrophic Waters Using Adsorption: A Laboratory Comparison of Commercial and Moringa-Derived Adsorbents. Limnol. Rev. 2025, 25, 25. https://doi.org/10.3390/limnolrev25020025
Duque DR, Reis AGd, Formiga JKS, Rodgher S. Challenges in Phosphorus Removal from Eutrophic Waters Using Adsorption: A Laboratory Comparison of Commercial and Moringa-Derived Adsorbents. Limnological Review. 2025; 25(2):25. https://doi.org/10.3390/limnolrev25020025
Chicago/Turabian StyleDuque, Daniela Resende, Adriano Gonçalves dos Reis, Jorge Kennety Silva Formiga, and Suzelei Rodgher. 2025. "Challenges in Phosphorus Removal from Eutrophic Waters Using Adsorption: A Laboratory Comparison of Commercial and Moringa-Derived Adsorbents" Limnological Review 25, no. 2: 25. https://doi.org/10.3390/limnolrev25020025
APA StyleDuque, D. R., Reis, A. G. d., Formiga, J. K. S., & Rodgher, S. (2025). Challenges in Phosphorus Removal from Eutrophic Waters Using Adsorption: A Laboratory Comparison of Commercial and Moringa-Derived Adsorbents. Limnological Review, 25(2), 25. https://doi.org/10.3390/limnolrev25020025