Diversity and Variability of the Course of Ice Phenomena on the Lakes Located in the Southern and Eastern Part of the Baltic Sea Catchment Area
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussions
5. Conclusions
- -
- The first region—located west of the Vistula—is distinguished by the shortest ice cover time (61.1 days), which appeared on average on December 28 and disappeared on March 8, having the smallest thickness (22.9 cm). Ice cover accounts for 79.9% of the duration of all ice phenomena,
- -
- The second region is the eastern part of the Polish Lowlands (east of the Vistula), characterized by a much longer duration of ice cover on the lakes (74.8 days on average), which lies here from December 27 to March 17, and has an average maximum thickness of 29.9 cm. Ice cover has a similar share in the duration of all ice phenomena (79.9%).
- -
- The third region includes lakes located in the eastern part of the Belarusian Lake District. Ice cover remains there for the longest, 114 days, from December 9 to March 31. Its thickness reaches an average of 40.4 cm, while in some seasons it reaches over 70 cm and accounts for 82.2% of all ice phenomena.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kursisto, E.; et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Gronskaya, T.P. Ice thickness in relation to climate forcing in Russia. Verh. Int. Ver. Limnol. 2000, 27, 2800–2802. [Google Scholar] [CrossRef]
- Blenckner, T. Climate Related Impacts on a Lake—From Physics to Biology; Acta Universitatis Upsaliensis: Uppsala, Sweden, 2001; Volume 32, p. 37. [Google Scholar]
- Schindler, D.W. The effects of climate warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. Oceanogr. 1996, 41, 1004–1017. [Google Scholar] [CrossRef]
- Yoo, J.; D’Odorico, P. Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: The effect of the North Atlantic Oscillation. J. Hydrol. 2002, 268, 100–112. [Google Scholar] [CrossRef]
- Vuglinsky, V.S.; Gronskaya, T.P.; Lemeshko, N.A. Long-term characteristics of ice events and ice thickness on the largest lakes and reservoirs of Russia: In Ice in the environment. In Proceedings of the 16th International Symposium on Ice, Dunedin, New Zealand, 2–6 December 2002; Volume 3, pp. 80–86. [Google Scholar]
- Skowron, R. Ice phenomena in investigations of Polish lakes. In Bulletin of Geography; Phisical Geography Series; Sciendo: Toruń, Poland, 2021; pp. 15–29. [Google Scholar]
- Marszelewski, W.; Skowron, R. Spatial Diversity of the Ice Cover on the Lakes of the European Lowland in the Winter Season 2003/2004. In Limnological Review; Machowski, R., Rzętała, M., Eds.; Sciendo: Cieszyn, Poland, 2005; Volume 5, pp. 155–165. [Google Scholar]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Zmienność termicznej zimy w Polsce w latach 1960–2015. Acta Agroph. 2017, 24, 205–220. (In Polish) [Google Scholar]
- Sobolewski, W.; Borowiak, D.; Borowiak, M.; Skowron, R. Baza danych jezior Polski i jej wykorzystanie w badaniach limnologicznych, Wyd. In “Picador” Komunikacja Graficzna s.c.; Uniwersytet Marii Curie-Skłodowskiej: Lublin, Poland, 2014; p. 198. [Google Scholar]
- Sziwa, R. Maximum ice cover thickness on lakes of the Oder basin, Przymorze and the lower Vistula basin. In Limnological Review; Turczyński, Ed.; Sciendo: Lublin, Poland, 2002; Volume 2, pp. 391–397. [Google Scholar]
- Kirvel, P.I. Features of the ice regime of lakes in Belarus. Belarus Pediatr. Univ. 2007, 59–65. (In Russian) [Google Scholar]
- Marszelewski, W.; Skowron, R. Extreme ice phenomena on the lakes of Northern Poland. Limnol. Rev. 2009, 9, 81–89. [Google Scholar]
- Skowron, R. Ice sheet in the lakes of the Polish Lowland. Distribution, differences and trends. In Limnological Review; Jaśkowski, B., Ed.; Sciendo: Kielce, Poland, 2003; Volume 3, pp. 205–212. [Google Scholar]
- Skowron, R. Zróżnicowanie i Zmienność Wybranych Elementów Reżimu Termicznego Wody w Jeziorach na Niżu Polskim (Diversity and Variability of Selected Elements of the Thermal Regime of Water in Lakes in the Polish Lowlands); Wydawnictwo Naukowe UMK: Toruń, Poland, 2011; p. 345, (In Polish and English Summary). [Google Scholar]
- Fortuniak, K.; Kożuchowski, K.; Żmudzka, E. Trendy i okresowość temperatury powietrza w Polsce w drugiej połowie XX wieku (Trends, and periodicity of changes in air temperature in Poland in the second half of 20th century). Przegląd Geofiz. 2001, 46, 283–303. [Google Scholar]
- Przybylak, R.; Wójcik, G.; Marciniak, K. Wpływ Oscylacji Północnoatlantyckiej i Arktycznej na warunki termiczne chłodnej pory roku w Polsce w XVI-XX wiekach (Influence of the North Atlantic Oscillation and Artic Oscilation on thermal conditions in the cold season in Poland from the 16th to the XXth centuries. Przegląd Geofiz. 2003, 68, 61–74. (In Polish) [Google Scholar]
- Kaszewski, B.M. Zmiany klimatu Polski w pracach polskich klimatologów (the changes of climate in Poland in the papers of polish climatologists). Przeglad Geofiz. 2015, 60, 217–235. [Google Scholar]
- Barańczuk, J.; Marchlewicz, R. Diversity of development of ice chosen lakes of Kaszubskie Lakeland in winter 2003. In Zróżnicowanie Rozwoju Zjawisk Lodowych na Wybranych Jeziorach Pojezierza Kaszubskiego Zimą 2003 r.; Jaśkowski, B., Ed.; Limnological Review; Sciendo: Kielce, Poland, 2003; Volume 3, pp. 3–8. [Google Scholar]
- Girjatowicz, J.P. The influence of the North Atlantic Oscillation on ice conditions in coastal lakes of the Southern Baltic Sea. Ann. Limnol. Int. J. Lim. 2003, 39, 71–80. [Google Scholar] [CrossRef]
- Borowiak, D.; Barańczuk, J. Secular fluctuations of ice phenomena in Upper Radunia Lake, Kashubian Lakeland. Limnol. Rev. 2004, 4, 17. [Google Scholar]
- Barańczuk, J.; Borowiak, D. Zjawiska lodowe jezior (Ice phenomena in lakes). In Jeziora Górnej Raduni i Jej Zlewnia w Badaniach z Udziałem Stacji Limnologicznej w Borucinie; Lange, W., Ed.; Badania Limnologiczne; Katedra Limnologii Uniwersytetu Gdańskiego: Gdańsk, Poland, 2005; Volume 3, pp. 251–260. [Google Scholar]
- Marszelewski, W.; Skowron, R. Ice cover as an indicator of winter air temperature changes: Case study of the Polish Lowland lakes. Hydrol. Sci. J. 2006, 51, 336–349. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Skowron, R. Tendencje zmian zjawisk lodowych jezior Polski w latach 1951–2010 (Ten_dencies of changes of the ice phenomena in Polish lakes in the period 1951–2010). Przegląd Geogr. 2014, 86, 23–40, (In Polish, English Summary). [Google Scholar] [CrossRef]
- Girjatowicz, J.P. Effects of atmospheric circulation on ice conditions in the Southern Baltic coastal lagoons. Int. J. Climatol. 2001, 21, 1593–1605. [Google Scholar] [CrossRef]
- Skowron, R. Changeability of the ice cover on the lakes of northern Poland in the light of climatic changes. In Bulletin of Geography; Phisical Geography Series; Sciendo: Toruń, Poland, 2009; Volume 1, pp. 103–124. [Google Scholar]
- Wrzesiński, D.; Ptak, M.; Baczyńska, A. Effect of the North Atlantic Oscillation on ice phenomena on selected lakes in Poland over the years 1961–2010. Quaest. Geogr. 2013, 32, 119–128. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Skowron, R.; Strzelczak, A. Changes in ice on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica 2015, 53, 42–49. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Choiński, A.; Ptak, M.; Skowron, R. Effect of the North Atlantic Oscillation on the pattern of lake ice phenology in Poland. Acta Geophys. 2015, 63, 1664–1684. [Google Scholar] [CrossRef]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.A. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Gronskaya, T.P.; Lemeshko, N.A.; Arvola, L.; Jarvinen, M. Lakes of European Russia and Finland as Indicators of Climate Change. World Resour. Rev. 2002, 14, 189–203. [Google Scholar]
- Palecki, M.A.; Barry, R.G. Freeze-up and Break-up of Lakes as an Index of Temperature Changes during the Transition Seasons: A Case Study for Finland. J. Appl. Meteorol. 1985, 25, 893–902. [Google Scholar] [CrossRef]
- Kärkäs, E. The ice season of Lake Pääjärvi in southern Finland. Geophysica 2000, 36, 85–94. [Google Scholar]
- Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 2006, 37, 347–363. [Google Scholar] [CrossRef]
- Lei, R.; Leppäranta, M.; Cheng, B.; Heil, P.; Li, Z. Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008. Clim. Chang. 2012, 115, 725–739. [Google Scholar] [CrossRef]
- Efremova, T.; Palshin, N.; Zdorovennov, R. Long-term characteristics of ice phenology in Karelian lakes. Est. J. Earth Sci. 2013, 62, 33–41. [Google Scholar] [CrossRef]
- Karetnikov, S.; Naumenko, M. Recent trends in Lake Ladoga ice cover. Hydrobiologia 2008, 599, 41–48. [Google Scholar] [CrossRef]
- Lemeshko, N.; Gronskaya, T. Changes in ice events and ice thickness on lakes of Russia in latitudes. In Proceedings of the XXIII Nordic Hydrological Conference, Tallinn, Estonia, 8–12 August 2004; NHP Report No 48. Tartu Volume II, pp. 680–684. [Google Scholar]
- Vuglinsky, V.S. Extremely early and late dates of lake freezing and ice break-up in Russia. Verh. Int. Ver. Limnol. 2000, 27, 2793–2795. [Google Scholar]
- Weyhenmeyer, G.A.; Livingstone, D.M.; Meilis, M.; Jensen, O.; Benson, B.; Magnuson, J.J. Large geographical differences in the sensitivity of ice–covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Chang. Biol. 2011, 17, 268–275. [Google Scholar] [CrossRef]
- Reinart, A.; Pärn, O. Ice conditions of a large shallow lake (Lake Peipsi) determined by observations, an ice model, and satellite images. Proc. Est. Acad. Sci. Biol. Ecol. 2006, 55, 243–261. [Google Scholar]
- Salo, Y.A.; Nazarova, L.E. Multiannual variability of the Onega Lake ice regime in conditions of variability of the regional climate. Process. Russ. Geogr. Soc. 2011, 143, 50–55. (In Russian) [Google Scholar]
- Bukantis, A.; Geubinas, Z.; Kazakevicius, S.; Kilkus, K.; Mikelinskiene, A.; Mokrunaite, R.; Rimkus, E.; Samula, M.; Stankunavicius, G.; Valiuskevicius, G.; et al. Klimato svyraminu poveikis fiziniams geografiniams procesams Lietuvoje. In The Influence of Climatic Variations on Physical Geographical Processes in Lithuania, Geografijos Institutas; Bukantis, A., Kilkus, K., Rimkus, E., Eds.; Vilnius Universitetas: Vilnius, Lithuania, 2001; p. 280. [Google Scholar]
- Danilovish, I. Influence of Climate Warming on Hydro-Logical Regime of Lakes and Reservoirs in Belarus, Lakes and Artificial Water Reservoirs—Natural Processes and Socio-Economic Importance; Andrzej, T.J., Mariusz, R., Eds.; Iniversity of Silesia-Faculty of Earth Sciences, Polish Limnological Society, 2005; pp. 53–58. [Google Scholar]
- Danilovish, I.S.; Nahibina, M.E.; Zhuravovich, L.N.; Kvach, E.G. The peculiarities of hydrological regime during last decades within the territory of Belarus. Nat. Rev. 2017, 2, 5–12. (In Russian) [Google Scholar]
- Kirvel, P.I. Estimation of the ice thickness of the lakes of Belarus in a changing climate. In Proceedings of the International Youth Conference, St. Petersburg, Russia, 18–22 October 2012; Volume 1, pp. 149–153. (In Russian). [Google Scholar]
- Kvambekk, Å.S.; Melvold, K. Long-term trends in water temperature and ice cover in the subalpine lake, Øvre Heimdalsvatn, and nearby lakes and riverso. Hydrobiologia 2010, 642, 47–60. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Meili, M.; Livingstone, D.M. Systematic differences in the trend toward earlier ice-out on Swedish lakes along a latitudinal temperature gradient. Verh. Int. Ver. Limnol. 2005, 29, 257–260. [Google Scholar] [CrossRef]
- L’Abée-Lund, J.H.; Vøllestad, L.A.; Brittain, J.E.; Kvambekk, Å.S.; Solvang, T. Geographic variation and temporal trends in ice phenology in Norwegian lakes during the period 1890–2020. Cryosphere 2021, 15, 2333–2356. [Google Scholar] [CrossRef]
- Franssena, K.J.; Scherrer, S.C. Freezing of lakes on the Swiss plateau in the period 1901–2006. Int. J. Climatol. 2008, 28, 421–433. [Google Scholar] [CrossRef]
- Takács, K.; Kern, Z.; Pásztor, L. Long-term ice phenology records from eastern–central Europe. Earth Syst. Sci. Data 2018, 10, 391–404. [Google Scholar] [CrossRef]
- Maher, O.A.; Uvo, C.B.; Bengtsson, L. Comparison between two extreme NAO winters and consequences on the thermal regime of Lake Vendyurskoe, Karelia. J. Hydrometeorol. 2005, 6, 775–783. [Google Scholar] [CrossRef]
- George, D.G. The impact of the North Atlantic Oscillation on the development of ice on Lake Windermere. Clim. Chang. 2007, 81, 455–468. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A. Do warmer winters change variability patterns of physical and chemical lake conditions in Sweden? Aquat. Ecol. 2009, 43, 653–659. [Google Scholar] [CrossRef]
- Soja, A.-M.K.; Kutics, K.; Maracek, K.; Molnár, G.; Soja, G. Changes in ice phenology characteristics of two Central European steppe lakes from 1926 to 2012—Influences of local weather and large scale oscillation patterns. Clim. Chang. 2014, 126, 119–133. [Google Scholar] [CrossRef]
- Adrian, R.; Hintze, T. Effects of winter air temperature on the ice phenology of the Müggelsee Berlin (Germany). Verh. Int. Ver. Limnol. 2000, 27, 2808–2811. [Google Scholar] [CrossRef]
- Bernhardt, J.; Engelhardt, C.; Kirillin, G.; Matschullat, J. Lake ice phenology in Berlin-Brandenburg from 1947–2007: Observations and model hindcasts. Clim. Chang. 2012, 112, 791–817. [Google Scholar] [CrossRef]
- Choiński, A.; Pociask-Karteczka, J.; Ptak, M.; Strzelczak, A. Zjawiska lodowe na Morskim Oku. In Morskie Oko—Przyroda i Człowiek, Wyd; Choiński, A., Pociask-Karteczka, J., Eds.; Tatrzańskiego Parku Narodowego: Zakopane, Poland, 2014; pp. 67–79. (In Polish) [Google Scholar]
- Sánchez-López, G.; Hernández, A.; Pla-Rabes, S.; Toro, M.; Granados, I.; Sigró, J.; Trigo, R.M.; Rubio-Inglés, M.J.; Camarero, L.; Valero-Garcés, B.; et al. The effects of the NAO on the ice phenology of Spanish alpine lakes. Clim. Chang. 2015, 130, 101–113. [Google Scholar] [CrossRef]
- Pasławski, Z. Zlodzenie jezior w Polsce. Przegląd Geofiz. 1982, 27, 79–92. (In Polish) [Google Scholar]
- Marsz, A. Oscylacja Północnoatlantycka a reżim termiczny zim na obszarze Polski Północno-Zachodniej i polskim wybrzeżu Bałtyku. Przegląd Geogr. 1999, 71, 225–245. (In Polish) [Google Scholar]
- Marsz, A.; Styszyńska, A. Oscylacja Północnego Atlantyku a Temperatura Powietrza Nad Polską; Wyższa Szkoła Morska w Gdyni; Wydaw. Uczelniane WSM: Gdynia, Poland, 2001; p. 107. (In Polish) [Google Scholar]
- Boryczka, J. Mit efektu cieplarnianego (The greenhouse effect myth). Przegląd Geofiz. 2004, 49, 43–56. [Google Scholar]
- Bijak, S. Wahania temperatury powietrza w Warszawie i Tallinie w latach 1779–2000. In Ekstremalne Zjawiska Hydrologiczne i Meteorologiczne; Bogdanowicz, E., Kossowska-Cezak, U., Szkutnicki, I.J., Eds.; Polskie Towarzystwo Geofizyczne, ImiGW: Warszawa, Poland, 2005; pp. 81–88. [Google Scholar]
No. | Lake | Geographic Location | Area in ha | Maximum Depth in m | Mean Depth in m | Lake Volume in Million m3 | The Height of the Water Table in m a.s.l. | The Length of the Coastline in km | |
---|---|---|---|---|---|---|---|---|---|
Longitude | Latitude | ||||||||
1 | Osiek | 15°40′ E | 52°57′ N | 514.0 | 35.3 | 9.3 | 50.06 | 52.5 | 27.8 |
2 | Sławskie | 16°01′ E | 51°53′ N | 822.5 | 12.3 | 5.2 | 42.7 | 57.0 | 24.6 |
3 | Łebsko | 17°23′ E | 54°42′ N | 7020.0 | 6.3 | 1.6 | 117.5 | 0.2 | 55.4 |
4 | Charzykowskie | 17°30′ E | 53°47′ N | 1336.0 | 30.5 | 9.8 | 134.5 | 120.0 | 31.0 |
5 | Biskupińskie | 17°44′ E | 52°47′ N | 107.0 | 13.7 | 5.5 | 6.4 | 78.6 | 5.6 |
6 | Jeziorak | 19°36′ E | 53°43′ N | 3152.5 | 12.9 | 4.1 | 141.6 | 99.2 | 49.0 |
7 | Mikołajskie | 21°35′ E | 53°46′ N | 424.0 | 25.9 | 11.2 | 55.74 | 115.7 | 14.6 |
8 | Ełckie | 22°20′ E | 53°48′ N | 385.0 | 55.8 | 15.0 | 57.4 | 119.9 | 18.6 |
9 | Hańcza | 22°48′ E | 54°16′ N | 291.5 | 106.1 | 38.7 | 120.4 | 227.3 | 11.8 |
10 | Serwy | 23°12′ E | 53°54′ N | 438.5 | 41.5 | 14.1 | 67.2 | 126.8 | 16.1 |
11 | Vygonoshchanskoe 1 | 25°56′ E | 52°41′ N | 2600.0 | 2.3 | 1.2 | 32.1 | 153.0 | 21.0 |
12 | Naroch | 26°44′ E | 54°51′ N | 7960.0 | 24.8 | 8.9 | 710.0 | 165.0 | 41.0 |
13 | Driviaty | 27°01′ E | 55°36′ N | 3614.0 | 12.0 | 6.1 | 223.5 | 37.6 | |
14 | Chervonoe | 27°58′ E | 52°24′ N | 4032.0 | 2.9 | 0.7 | 27.3 | 136.4 | 30.0 |
15 | Lukomskoe 2 | 29°05′ E | 54°40′ N | 3771.0 | 11.5 | 6.7 | 243 | 165.1 | 36.4 |
Stations | Average Air Temperature | Mean Trend | ||
---|---|---|---|---|
in January | in December–March | in December–March | Year | |
Gorzów Wlkp. | −0.9 | 0.8 | 0.05 | 0.04 |
Chojnice | −2.3 | −0.6 | 0.05 | 0.04 |
Olsztyn | −2.9 | −1.0 | 0.05 | 0.03 |
Suwałki | −4.3 | −2.4 | 0.05 | 0.03 |
Pińsk | −4.4 | −4.4 | 0.08 | 0.05 |
Wierchniedwińsk | −5.9 | −4.0 | 0.07 | 0.04 |
Vitebsk | −6.6 | −4.4 | 0.08 | 0.05 |
Mogilev | −6.5 | −4.3 | 0.06 | 0.03 |
No. | Lake | Beginning of | End of | Duration of Days | Maximum Thickness of Ice Cover (cm) | Mean Proportional Part of Ice Phenomena in Longterm Period (%) | |||
---|---|---|---|---|---|---|---|---|---|
Ice Phenomena | Ice Cover | Ice Cover | Ice Phenomena | Ice Phenomena | Ice Cover | ||||
1 | Osiek | 27-Dec | 3-Jan | 11-Mar | 16-Mar | 66.5 | 59.0 | 20.5 | 81.8 |
2 | Sławskie | 13-Dec | 24-Dec | 3-Mar | 4-Mar | 68.6 | 59.2 | 21.9 | 80.1 |
3 | Łebsko | 11-Dec | 23-Dec | 1-Mar | 8-Mar | 69.2 | 55.6 | 22.2 | 74.6 |
4 | Charzykowskie | 27-Dec | 4-Jan | 14-Mar | 21-Mar | 73.9 | 62.3 | 24.5 | 77.7 |
5 | Biskupińskie | 15-Dec | 20-Dec | 8-Mar | 12-Mar | 79.2 | 69.2 | 25.5 | 85.3 |
6 | Jeziorak | 6-Dec | 15-Dec | 15-Mar | 19-Mar | 94.4 | 83.1 | 27.7 | 86.4 |
7 | Mikołajskie | 16-Dec | 31-Dec | 17-Mar | 31-Mar | 95.6 | 72.0 | 32.2 | 71.7 |
8 | Ełckie | 18-Dec | 27-Dec | 8-Mar | 24-Mar | 90.4 | 63.4 | 28.3 | 68.8 |
9 | Hańcza | 26-Dec | 3-Jan | 20-Mar | 29-Mar | 91.2 | 73.7 | 30.9 | 78.8 |
10 | Serwy | 19-Dec | 28-Dec | 21-Mar | 29-Mar | 98.1 | 81.6 | 30.5 | 81.2 |
11 | Vygonoshchanskoe 1 | 17-Nov | 30-Nov | 24-Mar | 28-Mar | 132.4 | 113.1 | 37.5 | 84.4 |
12 | Naroch | 29-Nov | 17-Dec | 08-Apr | 12-Apr | 137.2 | 113.0 | 46.5 | 81.1 |
13 | Driviaty | 28-Nov | 8-Dec | 07-Apr | 13-Apr | 139.9 | 120.1 | 45.7 | 83.4 |
14 | Chervonoe | 20-Nov | 30-Nov | 27-Mar | 28-Mar | 132.1 | 116.6 | 36.0 | 85.3 |
15 | Lukomskoe 2 | 7-Dec | 18-Dec | 26-Mar | 02-Apr | 120.2 | 97.5 | 36.2 | 76.7 |
No. | Lake | Beginning of | End of | Duration of Days | Maximum Thickness of Ice Cover (cm) | |||
---|---|---|---|---|---|---|---|---|
Ice Phenomena | Ice Cover | Ice Cover | Ice Phenomena | Ice Phenomena | Ice Cover | |||
1 | Osiek | 18.41 | 18.92 | 20.92 | 19.32 | 31.16 | 31.2 | 10.55 |
2 | Sławskie | 17.77 | 19.41 | 27.10 | 25.81 | 31.61 | 30.46 | 10.18 |
3 | Łebsko | 22.51 | 21.00 | 27.15 | 27.23 | 33.85 | 32.13 | 10.91 |
4 | Charzykowskie | 20.07 | 18.84 | 19.57 | 18.90 | 30.47 | 29.05 | 11.20 |
5 | Biskupińskie | 16.92 | 20.48 | 22.11 | 21.27 | 29.80 | 31.94 | 10.89 |
6 | Jeziorak | 14.72 | 17.78 | 21.90 | 20.94 | 28.01 | 30.79 | 11.87 |
7 | Mikołajskie | 17.33 | 18.97 | 22.98 | 18.41 | 31.61 | 32.28 | 13.88 |
8 | Ełckie | 18.02 | 19.64 | 25.78 | 21.54 | 30.74 | 32.39 | 10.02 |
9 | Hańcza | 20.74 | 19.62 | 24.13 | 22.49 | 29.75 | 28.66 | 14.26 |
10 | Serwy | 18.09 | 19.19 | 22.04 | 21.10 | 27.32 | 27.85 | 12.19 |
11 | Vygonoshchanskoe 1 | 14.69 | 17.62 | 18.28 | 18.41 | 22.01 | 23.56 | 11.88 |
12 | Naroch | 17.28 | 17.00 | 13.06 | 13.36 | 21.97 | 22.59 | 13.49 |
13 | Driviaty | 17.70 | 18.3 | 14.80 | 14.71 | 18.70 | 24.52 | 15.22 |
14 | Chervonoe | 14.64 | 16.77 | 15.55 | 16.61 | 19.5 | 21.83 | 11.11 |
15 | Lukomskoe 2 | 17.59 | 19.13 | 22.42 | 21.97 | 25.14 | 31.34 | 11.41 |
No. | Lake | 1961–1970 | 1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 |
---|---|---|---|---|---|---|---|
1 | Osiek | 78.4 | 63.7 | 55.1 | 48.0 | 45.0 | 29.1 |
2 | Sławskie | 73.9 | 57.4 | 58.5 | 47.0 | 58.6 | 34.2 |
3 | Łebsko | 78.1 | 60.8 | 52.2 | 46.7 | 40.9 | 32.6 |
4 | Charzykowskie | 79.6 | 61.0 | 58.5 | 48.7 | 63.1 | 48.0 |
5 | Biskupińskie | 93.8 | 65.0 | 61.3 | 64.6 | 58.9 | 38.3 |
6 | Jeziorak | 104.1 | 85.3 | 78.7 | 73.8 | 73.5 | 65.9 |
7 | Mikołajskie | 91.4 | 80.4 | 66.3 | 60.3 | 61.8 | 56.3 |
8 | Ełckie | 95.6 | 69.4 | 62.7 | 54.4 | 60.9 | 66.1 |
9 | Hańcza | 87.9 | 74.1 | 64.9 | 70.9 | 70.6 | 58.9 |
10 | Serwy | 97.6 | 84.2 | 80.0 | 87.4 | 76.9 | 60.8 |
11 | Vygonoshchanskoe 1 | 128.6 | 120.2 | 115.5 | 124.1 | 109.3 | 93.9 |
12 | Naroch | 123.3 | 119.2 | 115.4 | 122.5 | 101.0 | 97.4 |
13 | Driviaty | 132.6 | 124.2 | 121.6 | 139.6 | 101.0 | 98.8 |
14 | Chervonoe | 130.1 | 125.0 | 119.3 | 124.0 | 111.5 | 94.5 |
15 | Lukomskoe 2 | 137.1 | 87.1 | 88.2 | 92.9 | 98.6 | 89.2 |
No | Lake | Beginning of | End of | Duration of Days | Maximum Thickness of Ice Cover (cm) | |||
---|---|---|---|---|---|---|---|---|
Ice Phenomena | Ice Cover | Ice Cover | Ice Phenomena | Ice Phenomena | Ice Cover | |||
1 | Osiek | 0.14 | 0.32 | −0.45 | −0.33 | −0.65 | −0.86 | −0.20 |
2 | Sławskie | 0.18 | 0.31 | −0.31 | −0.18 | −0.46 | −0.57 | −0.08 |
3 | Łebsko | 0.56 | 0.19 | −0.42 | −0.56 | −0.88 | −0.82 | −0.20 |
4 | Charzykowskie | 0.22 | 0.14 | −0.33 | −0.48 | −0.65 | −0.46 | −0.17 |
5 | Biskupińskie | 0.14 | 0.36 | −0.39 | −0.26 | −0.58 | −0.84 | −0.16 |
6 | Jeziorak | 0.16 | 0.19 | −0.36 | −0.29 | −0.55 | −0.66 | −0.26 |
7 | Mikołajskie | 0.37 | 0.16 | −0.37 | −0.23 | −0.61 | −0.68 | −0.34 |
8 | Ełckie | 0.19 | 0.18 | −0.37 | −0.35 | −0.55 | −0.56 | −0.13 |
9 | Hańcza | 0.09 | 0.14 | −0.27 | −0.11 | −0.22 | −0.44 | −0.48 |
10 | Serwy | 0.38 | 0.18 | −0.35 | −0.35 | −0.65 | −0.58 | −0.35 |
11 | Vygonoshchanskoe 1 | 0.15 | 0.32 | −0.21 | −0.28 | −0.32 | −0.42 | −0.35 |
12 | Naroch | 0.49 | 0.32 | −0.11 | −0.20 | −0.83 | −0.58 | −0.26 |
13 | Driviaty | 0.16 | 0.24 | −0.40 | −0.31 | −0.41 | −0.69 | −0.58 |
14 | Chervonoe | 0.04 | 0.24 | −0.09 | −0.34 | −0.48 | −0.56 | −0.32 |
15 | Lukomskoe 2 | 0.41 | 0.35 | −0.67 | −0.22 | −0.63 | −0.76 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skowron, R.; Kirvel, P.; Choiński, A.; Kirvel, I. Diversity and Variability of the Course of Ice Phenomena on the Lakes Located in the Southern and Eastern Part of the Baltic Sea Catchment Area. Limnol. Rev. 2023, 23, 33-49. https://doi.org/10.3390/limnolrev23010003
Skowron R, Kirvel P, Choiński A, Kirvel I. Diversity and Variability of the Course of Ice Phenomena on the Lakes Located in the Southern and Eastern Part of the Baltic Sea Catchment Area. Limnological Review. 2023; 23(1):33-49. https://doi.org/10.3390/limnolrev23010003
Chicago/Turabian StyleSkowron, Rajmund, Pavel Kirvel, Adam Choiński, and Ivan Kirvel. 2023. "Diversity and Variability of the Course of Ice Phenomena on the Lakes Located in the Southern and Eastern Part of the Baltic Sea Catchment Area" Limnological Review 23, no. 1: 33-49. https://doi.org/10.3390/limnolrev23010003