# Flexible Parametric Accelerated Hazard Model: Simulation and Application to Censored Lifetime Data with Crossing Survival Curves

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

- i.
- It possesses the adaptability of parametric survival regression models.
- ii.
- It offers a continuous SF that makes it simple to find where two survival curves overlap.
- iii.
- It allows different shapes for the HRF and has the tractability of a parametric survival regression model.

## 2. AH Model Formulation

## 3. Baseline Hazard

## 4. The Proposed Model

#### 4.1. Submodels

#### 4.1.1. Submodel I: $\eta =1$

#### 4.1.2. Submodel II: $\eta =k$

#### 4.1.3. Submodel III: ${\eta}^{\alpha}\to 0$

## 5. Inferential Procedures

#### 5.1. Classical Approach

#### 5.2. Bayesian Approach

#### 5.2.1. Prior Distribution

#### 5.2.2. Likelihood Function

#### 5.2.3. Posterior Distribution

## 6. Simulation Study

- I.
- Procedure I: An MLE estimate technique.
- II.
- Procedure II: A Bayesian estimation technique with independent gamma priors for the baseline distribution parameters and a normal prior for the regression coefficients, as well as non-informative priors.

## 7. Applications

#### 7.1. Gastric Cancer Dataset

#### 7.2. Classical Analysis

#### 7.3. Likelihood Ratio Test

#### 7.4. Bayesian Analysis

#### 7.4.1. Numerical Summary

#### 7.4.2. Visual Summary

#### 7.4.3. Posterior Predictive Checks

#### 7.4.4. McMC Convergence Diagnostics

#### 7.4.5. Bayesian Model Selection

## 8. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.)
**1972**, 34, 187–202. [Google Scholar] [CrossRef] - Kalbfleisch, J.D. Non-parametric Bayesian analysis of survival time data. J. R. Stat. Soc. Ser. B (Methodol.)
**1978**, 40, 214–221. [Google Scholar] [CrossRef] - Buckley, J.; James, I. Linear regression with censored data. Biometrika
**1979**, 66, 429–436. [Google Scholar] [CrossRef] - Komárek, A.; Lesaffre, E. Bayesian accelerated failure time model with multivariate doubly interval-censored data and flexible distributional assumptions. J. Am. Stat. Assoc.
**2008**, 103, 523–533. [Google Scholar] [CrossRef] [Green Version] - Bennett, S. Analysis of survival data by the proportional odds model. Stat. Med.
**1983**, 2, 273–277. [Google Scholar] [CrossRef] - Demarqui, F.N.; Mayrink, V.D. Yang and Prentice model with piecewise exponential baseline distribution for modeling lifetime data with crossing survival curves. Braz. J. Probab. Stat.
**2021**, 35, 172–186. [Google Scholar] [CrossRef] - Breslow, N.E.; Edler, L.; Berger, J. A two-sample censored-data rank test for acceleration. Biometrics
**1984**, 40, 1049–1062. [Google Scholar] [CrossRef] - Diao, G.; Zeng, D.; Yang, S. Efficient semiparametric estimation of short-term and long-term hazard ratios with right-censored data. Biometrics
**2013**, 69, 840–849. [Google Scholar] [CrossRef] [Green Version] - Egge, K.; Zahl, P.H. Survival of glaucoma patients. Acta Ophthalmol. Scand.
**1999**, 77, 397–401. [Google Scholar] [CrossRef] - Putter, H.; Sasako, M.; Hartgrink, H.; Van de Velde, C.; Van Houwelingen, J. Long-term survival with non-proportional hazards: Results from the Dutch Gastric Cancer Trial. Stat. Med.
**2005**, 24, 2807–2821. [Google Scholar] [CrossRef] - Shyur, H.J.; Elsayed, E.; Luxhøj, J.T. A general model for accelerated life testing with time-dependent covariates. Nav. Res. Logist. (NRL)
**1999**, 46, 303–321. [Google Scholar] [CrossRef] - Zhang, H.; Wang, P.; Sun, J. Regression analysis of interval-censored failure time data with possibly crossing hazards. Stat. Med.
**2018**, 37, 768–775. [Google Scholar] [CrossRef] - Demarqui, F.N.; Mayrink, V.D.; Ghosh, S.K. An Unified Semiparametric Approach to Model Lifetime Data with Crossing Survival Curves. arXiv
**2019**, arXiv:1910.04475. [Google Scholar] - Chen, Y.Q.; Wang, M.C. Analysis of accelerated hazards models. J. Am. Stat. Assoc.
**2000**, 95, 608–618. [Google Scholar] [CrossRef] - Chen, Y.Q.; Jewell, N.P.; Yang, J. Accelerated hazards model: Method, theory and applications. Handb. Stat.
**2003**, 23, 431–441. [Google Scholar] - Lee, S.H. Some estimators and tests for accelerated hazards model using weighted cumulative hazard difference. J. Appl. Stat.
**2009**, 36, 473–482. [Google Scholar] [CrossRef] - Lee, S.H. On the estimators and tests for the semiparametric hazards regression model. Lifetime Data Anal.
**2016**, 22, 531–546. [Google Scholar] [CrossRef] - Rubio, F.J.; Remontet, L.; Jewell, N.P.; Belot, A. On a general structure for hazard-based regression models: An application to population-based cancer research. Stat. Methods Med Res.
**2019**, 28, 2404–2417. [Google Scholar] [CrossRef] - Khan, S.A. Exponentiated Weibull regression for time-to-event data. Lifetime Data Anal.
**2018**, 24, 328–354. [Google Scholar] [CrossRef] - Lawless, J.F. Statistical Models and Methods for Lifetime Data; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Muse, A.H.; Mwalili, S.; Ngesa, O.; Chesneau, C.; Alshanbari, H.M.; El-Bagoury, A.A.H. Amoud Class for Hazard-Based and Odds-Based Regression Models: Application to Oncology Studies. Axioms
**2022**, 11, 606. [Google Scholar] [CrossRef] - Muse, A.H.; Ngesa, O.; Mwalili, S.; Alshanbari, H.M.; El-Bagoury, A.A.H. A Flexible Bayesian Parametric Proportional Hazard Model: Simulation and Applications to Right-Censored Healthcare Data. J. Healthc. Eng.
**2022**, 2022, 2051642. [Google Scholar] [CrossRef] [PubMed] - Ashraf-Ul-Alam, M.; Khan, A.A. Generalized Topp-Leone-Weibull AFT modeling: A Bayesian Analysis with MCMC Tools Using R and Stan. Austrian J. Stat.
**2021**, 50, 52–76. [Google Scholar] [CrossRef] - Alvares, D.; Rubio, F.J. A tractable Bayesian joint model for longitudinal and survival data. Stat. Med.
**2021**, 40, 4213–4229. [Google Scholar] [CrossRef] [PubMed] - Muse, A.H.; Mwalili, S.; Ngesa, O.; Alshanbari, H.M.; Khosa, S.K.; Hussam, E. Bayesian and frequentist approach for the generalized log-logistic accelerated failure time model with applications to larynx-cancer patients. Alex. Eng. J.
**2022**, 61, 7953–7978. [Google Scholar] [CrossRef] - Al-Aziz, S.N.; Muse, A.H.; Jawad, T.M.; Sayed-Ahmed, N.; Aldallal, R.; Yusuf, M. Bayesian inference in a generalized log-logistic proportional hazards model for the analysis of competing risk data: An application to stem-cell transplanted patients data. Alex. Eng. J.
**2022**, 61, 13035–13050. [Google Scholar] [CrossRef] - Khan, S.A.; Khosa, S.K. Generalized log-logistic proportional hazard model with applications in survival analysis. J. Stat. Distrib. Appl.
**2016**, 3, 16. [Google Scholar] [CrossRef] [Green Version] - Chen, Y.; Hanson, T.; Zhang, J. Accelerated hazards model based on parametric families generalized with Bernstein polynomials. Biometrics
**2014**, 70, 192–201. [Google Scholar] [CrossRef] [Green Version] - Zhang, J.; Peng, Y. Crossing hazard functions in common survival models. Stat. Probab. Lett.
**2009**, 79, 2124–2130. [Google Scholar] [CrossRef] [Green Version] - Muse, A.H.; Mwalili, S.; Ngesa, O.; Chesneau, C.; Al-Bossly, A.; El-Morshedy, M. Bayesian and Frequentist Approaches for a Tractable Parametric General Class of Hazard-Based Regression Models: An Application to Oncology Data. Mathematics
**2022**, 10, 3813. [Google Scholar] [CrossRef] - Chen, Y.Q.; Jewell, N.P. On a general class of semiparametric hazards regression models. Biometrika
**2001**, 88, 687–702. [Google Scholar] [CrossRef] - Muse, A.H.; Mwalili, S.; Ngesa, O.; Almalki, S.J.; Abd-Elmougod, G.A. Bayesian and classical inference for the generalized log-logistic distribution with applications to survival data. Comput. Intell. Neurosci.
**2021**, 2021, 5820435. [Google Scholar] [CrossRef] - De Santana, T.V.F.; Ortega, E.M.; Cordeiro, G.M.; Silva, G.O. The Kumaraswamy-log-logistic distribution. J. Stat. Theory Appl.
**2012**, 11, 265–291. [Google Scholar] - Teamah, A.E.A.; Elbanna, A.A.; Gemeay, A.M. Heavy-tailed log-logistic distribution: Properties, risk measures and applications. Stat. Optim. Inf. Comput.
**2021**, 9, 910–941. [Google Scholar] [CrossRef] - Muse, A.H.; Tolba, A.H.; Fayad, E.; Abu Ali, O.A.; Nagy, M.; Yusuf, M. modeling the COVID-19 mortality rate with a new versatile modification of the log-logistic distribution. Comput. Intell. Neurosci.
**2021**, 2021, 8640794. [Google Scholar] [CrossRef] - Mansour, M.M.; Ibrahim, M.; Aidi, K.; Shafique Butt, N.; Ali, M.M.; Yousof, H.M.; Hamed, M.S. A new log-logistic lifetime model with mathematical properties, copula, modified goodness-of-fit test for validation and real data modeling. Mathematics
**2020**, 8, 1508. [Google Scholar] [CrossRef] - Alkhairy, I.; Nagy, M.; Muse, A.H.; Hussam, E. The Arctan-X family of distributions: Properties, simulation, and applications to actuarial sciences. Complexity
**2021**, 2021, 4689010. [Google Scholar] [CrossRef] - Alfaer, N.M.; Gemeay, A.M.; Aljohani, H.M.; Afify, A.Z. The extended log-logistic distribution: Inference and actuarial applications. Mathematics
**2021**, 9, 1386. [Google Scholar] [CrossRef] - Muse, A.H.; Mwalili, S.M.; Ngesa, O. On the log-logistic distribution and its generalizations: A survey. Int. J. Stat. Probab.
**2021**, 10, 93. [Google Scholar] [CrossRef] - Haghighi, M.N.F. On the power generalized Weibull family: Model for cancer censored data. Metron
**2009**, 67, 75–86. [Google Scholar] - Mudholkar, G.S.; Hutson, A.D. The exponentiated Weibull family: Some properties and a flood data application. Commun. Stat.-Methods
**1996**, 25, 3059–3083. [Google Scholar] [CrossRef] - Stacy, E.W. A generalization of the gamma distribution. In Ann. Math. Stat.
**1962**, 33, 1187–1192. [Google Scholar] [CrossRef] - Elshahhat, A.; Muse, A.H.; Egeh, O.M.; Elemary, B.R. Estimation for Parameters of Life of the Marshall-Olkin Generalized-Exponential Distribution Using Progressive Type-II Censored Data. Complexity
**2022**, 2022, 8155929. [Google Scholar] [CrossRef] - Muse, A.H.; Mwalili, S.; Ngesa, O.; Chesneau, C. AmoudSurv: An R Package for Tractable Parametric Odds-Based Regression Models. 2022. Available online: https://cran.r-project.org/web//packages/AmoudSurv/index.html (accessed on 1 November 2022).
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A probabilistic programming language. J. Stat. Softw.
**2017**, 76, 1–32. [Google Scholar] [CrossRef] [Green Version] - Watanabe, S. A widely applicable Bayesian information criterion. J. Mach. Learn. Res.
**2013**, 14, 867–897. [Google Scholar] - Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput.
**2017**, 27, 1413–1432. [Google Scholar] [CrossRef] - Muse, A.H.; Mwalili, S.; Ngesa, O.; Kilai, M. AHSurv: An R Package for Flexible Parametric Accelerated Hazards (AH) Regression Models. 2022. Available online: https://cran.r-project.org/web/packages/AHSurv/index.html (accessed on 1 November 2022).

**Figure 1.**Illustrating the overall survival curve and the crossing survival curves for the two types of treatment.

**Figure 10.**The empirical CDF, the dotted line and the CDF of the fitted model, the smooth curve, show that the fitted GLL–AH model predicts the future observations that are consistent with the current data.

**Figure 13.**Kaplan–Meier and fitted survival curve for the GLL–AH model of the gastric cancer dataset.

**Figure 14.**Kaplan–Meier and estimated survival plots for the competitive regression models with the GLL baseline distribution of the gastric cancer dataset.

**Figure 15.**Kaplan–Meier and estimated survival plots for the competitive AH models of the gastric cancer dataset.

**Table 1.**Simulation study for GLL–AH regression model. True values (True), Estimates (Est.), standard error (SE), average bias (AB), mean square error (MSE), and coverage probability (CP 95%) are presented for the parameters.

True | Est. | SE | AB | MSE | CP | Est. | SE | AB | MSE | $\widehat{\mathit{R}}$ | |
---|---|---|---|---|---|---|---|---|---|---|---|

Set I $\mathit{n}=50$ | |||||||||||

${\mathit{M}}_{\mathbf{2}}$ | MLE Approach | Bayesian | |||||||||

${\beta}_{1}$ | 0.75 | 0.800 | 0.100 | 0.050 | 0.037 | 93.85 | 0.790 | 0.002 | 0.040 | 0.036 | 1.002 |

${\beta}_{2}$ | 0.5 | 0.558 | 0.042 | 0.058 | 0.024 | 94.50 | 0.512 | 0.003 | 0.012 | 0.011 | 1.002 |

$\alpha $ | 1.50 | 1.590 | 0.010 | 0.090 | 0.008 | 95.20 | 1.505 | 0.001 | 0.005 | 0.003 | 1.000 |

k | 0.75 | 0.900 | 0.435 | 0.150 | 0.063 | 92.05 | 0.850 | 0.005 | 0.100 | 0.045 | 1.002 |

$\eta $ | 1.20 | 1.265 | 0.011 | 0.065 | 0.046 | 94.25 | 1.212 | 0.000 | 0.012 | 0.004 | 1.003 |

True | Est. | SE | AB | MSE | CP | Est. | SE | AB | MSE | $\widehat{\mathit{R}}$ | |

Set II $\mathit{n}=\mathbf{100}$ | |||||||||||

${\mathit{M}}_{\mathbf{2}}$ | MLE approach | Bayesian | |||||||||

${\beta}_{1}$ | 0.75 | 0.790 | 0.100 | 0.040 | 0.036 | 94.10 | 0.770 | 0.001 | 0.020 | 0.018 | 1.000 |

${\beta}_{2}$ | 0.5 | 0.530 | 0.030 | 0.030 | 0.024 | 94.80 | 0.510 | 0.002 | 0.010 | 0.010 | 1.001 |

$\alpha $ | 1.50 | 1.610 | 0.040 | 0.110 | 0.087 | 93.40 | 1.553 | 0.001 | 0.053 | 0.041 | 1.003 |

k | 0.75 | 0.850 | 0.250 | 0.100 | 0.056 | 93.20 | 0.800 | 0.004 | 0.050 | 0.037 | 1.002 |

$\eta $ | 1.20 | 1.250 | 0.008 | 0.050 | 0.034 | 94.80 | 1.205 | 0.000 | 0.005 | 0.003 | 1.001 |

Set III $\mathit{n}=\mathbf{300}$ | |||||||||||

True | Est. | SE | AB | MSE | CP | Est. | SE | AB | MSE | $\widehat{\mathit{R}}$ | |

${\mathit{M}}_{\mathbf{2}}$ | MLE approach | Bayesian | |||||||||

${\beta}_{1}$ | 0.75 | 0.78 | 0.092 | 0.030 | 0.032 | 94.40 | 0.768 | 0.001 | 0.018 | 0.016 | 1.000 |

${\beta}_{2}$ | 0.5 | 0.525 | 0.013 | 0.025 | 0.021 | 93.90 | 0.503 | 0.001 | 0.003 | 0.002 | 1.000 |

$\alpha $ | 1.50 | 1.592 | 0.021 | 0.042 | 0.030 | 93.85 | 1.506 | 0.001 | 0.006 | 0.006 | 1.001 |

k | 0.75 | 0.844 | 0.212 | 0.094 | 0.049 | 93.46 | 0.798 | 0.003 | 0.048 | 0.036 | 1.000 |

$\eta $ | 1.20 | 1.252 | 0.008 | 0.052 | 0.034 | 94.60 | 1.205 | 0.000 | 0.005 | 0.003 | 1.001 |

True | Est. | SE | AB | MSE | CP | Est. | SE | AB | MSE | $\widehat{\mathit{R}}$ | |

Set IV $\mathit{n}=\mathbf{500}$ | |||||||||||

${\mathit{M}}_{\mathbf{2}}$ | MLE approach | Bayesian | |||||||||

${\beta}_{1}$ | 0.75 | 0.775 | 0.065 | 0.025 | 0.017 | 95.10 | 0.752 | 0.000 | 0.002 | 0.002 | 1.000 |

${\beta}_{2}$ | 0.5 | 0.526 | 0.013 | 0.026 | 0.021 | 94.00 | 0.503 | 0.001 | 0.003 | 0.002 | 1.000 |

$\alpha $ | 1.50 | 1.550 | 0.040 | 0.050 | 0.037 | 94.70 | 1.503 | 0.001 | 0.003 | 0.001 | 1.000 |

k | 0.75 | 0.825 | 0.110 | 0.075 | 0.048 | 94.07 | 0.780 | 0.003 | 0.030 | 0.027 | 1.001 |

$\eta $ | 1.20 | 1.205 | 0.005 | 0.005 | 0.003 | 95.04 | 1.203 | 0.000 | 0.003 | 0.001 | 1.001 |

**Table 2.**Results from the fitted proposed fully parametric AH regression model and other survival regression models with the GLL baseline distribution to gastric cancer dataset.

Models | Parameter(s) | Estimate | SE | AIC | CAIC | HQIC |
---|---|---|---|---|---|---|

GLL-AH | $\beta $ | 2.690 | 0.021 | 244.318 | 242.845 | 248.351 |

$\alpha $ | 1.505 | 0.040 | ||||

k | 0.542 | 0.036 | ||||

$\eta $ | 0.133 | 0.022 | ||||

GLL-PO | $\beta $ | 0.750 | 0.101 | 251.816 | 250.522 | 255.848 |

$\alpha $ | 1.382 | 0.100 | ||||

k | 0.650 | 0.074 | ||||

$\eta $ | 0.500 | 0.042 | ||||

GLL-PH | $\beta $ | 0.130 | 0.241 | 255.565 | 254.345 | 259.598 |

$\alpha $ | 1.302 | 0.140 | ||||

k | 0.759 | 0.136 | ||||

$\eta $ | 0.580 | 0.222 | ||||

GLL-AFT | $\beta $ | 0.540 | 0.135 | 252.139 | 250.851 | 256.171 |

$\alpha $ | 1.545 | 0.127 | ||||

k | 0.557 | 0.106 | ||||

$\eta $ | 0.728 | 0.231 |

**Table 3.**Results from the fitted proposed fully parametric AH regression model with different baseline distributions to gastric cancer dataset.

Models | Parameter(s) | Estimate | SE | AIC | CAIC | HQIC |
---|---|---|---|---|---|---|

GLL-AH | $\beta $ | 2.690 | 0.021 | 244.318 | 242.845 | 248.351 |

$\alpha $ | 1.505 | 0.040 | ||||

k | 0.542 | 0.036 | ||||

$\eta $ | 0.133 | 0.022 | ||||

PGW-AH | $\beta $ | 1.930 | 0.082 | 251.186 | 249.878 | 255.218 |

$\alpha $ | 1.687 | 0.142 | ||||

k | 0.821 | 0.066 | ||||

$\eta $ | 2.226 | 0.102 | ||||

GG-AH | $\beta $ | 2.688 | 0.130 | 252.645 | 251.368 | 256.677 |

$\alpha $ | 1.821 | 0.122 | ||||

k | 0.482 | 0.236 | ||||

$\eta $ | 0.737 | 0.042 | ||||

EW-AH | $\beta $ | 2.066 | 0.110 | 252.667 | 251.390 | 256.699 |

$\alpha $ | 0.789 | 0.212 | ||||

k | 0.911 | 0.086 | ||||

$\eta $ | 2.283 | 0.052 | ||||

LL-AH | $\beta $ | 1.097 | 0.020 | 247.492 | 246.686 | 250.517 |

$\alpha $ | 1.913 | 0.052 | ||||

k | 1.213 | 0.019 | ||||

LN-AH | $\beta $ | 0.261 | 0.120 | 263.830 | 263.197 | 266.854 |

$\alpha $ | 0.065 | 0.101 | ||||

k | 1.260 | 0.032 | ||||

BXII-AH | $\beta $ | 0.923 | 0.142 | 249.144 | 248.359 | 252.168 |

$\alpha $ | 0.880 | 0.119 | ||||

k | 1.890 | 0.120 | ||||

W-AH | $\beta $ | 2.581 | 0.214 | 256.776 | 256.078 | 259.800 |

$\alpha $ | 1.013 | 0.049 | ||||

k | 1.818 | 0.112 | ||||

G-AH | $\beta $ | 2.367 | 0.430 | 255.121 | 254.406 | 258.145 |

$\alpha $ | 1.495 | 0.039 | ||||

k | 1.252 | 0.123 |

Model | Hypothesis | LRT | p-Value |
---|---|---|---|

GLL-AH vs. BXII-AH | ${H}_{0}:\eta =1,{H}_{1}:{H}_{0}$ is false, | 6.999 | 0.008 |

GLL-AH vs. LL-AH | ${H}_{0}$: $\eta =k,{H}_{1}:{H}_{0}$ is false, | 5.347 | 0.021 |

GLL-AH vs. W-AH | ${H}_{0}$: ${\eta}^{\alpha}\to 0$, ${H}_{1}:{H}_{0}$ is false, | 14.533 | <0.001 |

Models | Par (s) | Estimate | SE | SD | 2.5% | Medium | 97.5% | ${\mathit{N}}_{\mathit{eff}}$ | $\widehat{\mathit{R}}$ |
---|---|---|---|---|---|---|---|---|---|

GLL–AH | $\beta $ | 1.016 | 0.009 | 0.476 | 0.030 | 1.027 | 1.909 | 2684 | 1.001 |

$\alpha $ | 0.836 | 0.002 | 0.106 | 0.648 | 0.829 | 1.064 | 3097 | 1.002 | |

k | 1.553 | 0.004 | 0.196 | 1.205 | 1.544 | 1.969 | 2714 | 1.001 | |

$\eta $ | 0.674 | 0.003 | 0.191 | 0.353 | 0.653 | 1.105 | 3023 | 1.001 | |

GLL–PO | $\beta $ | 0.565 | 0.006 | 0.353 | −0.135 | 0.562 | 1.268 | 3617 | 1.001 |

$\alpha $ | 1.414 | 0.003 | 0.156 | 1.136 | 1.405 | 1.741 | 3257 | 1.000 | |

k | 0.804 | 0.002 | 0.115 | 0.600 | 0.796 | 1.054 | 2951 | 1.001 | |

$\eta $ | 0.806 | 0.004 | 0.214 | 0.429 | 0.792 | 1.262 | 2918 | 1.000 | |

GLL–PH | $\beta $ | 0.106 | 0.004 | 0.224 | −0.330 | 0.107 | 0.540 | 3216 | 1.000 |

$\alpha $ | 1.341 | 0.002 | 0.146 | 1.077 | 1.332 | 1.646 | 3588 | 1.001 | |

k | 0.876 | 0.002 | 0.122 | 0.662 | 0.869 | 1.134 | 3068 | 1.001 | |

$\eta $ | 0.837 | 0.004 | 0.221 | 0.452 | 0.820 | 1.315 | 3239 | 1.001 | |

GLL–AFT | $\beta $ | 0.418 | 0.005 | 0.269 | −0.116 | 0.415 | 0.949 | 3396 | 1.000 |

$\alpha $ | 1.435 | 0.003 | 0.177 | 1.124 | 1.423 | 1.804 | 3373 | 1.000 | |

k | 0.809 | 0.002 | 0.114 | 0.609 | 0.801 | 1.060 | 2963 | 1.000 | |

$\eta $ | 0.850 | 0.004 | 0.210 | 0.479 | 0.836 | 1.311 | 2728 | 1.000 |

**Table 6.**Results for the posterior properties of the submodels of the GLL–AH model including LL–AH, W–AH, and BXII–AH models.

Models | Par (s) | Estimate | SE | SD | 2.5% | Medium | 97.5% | ${\mathit{N}}_{\mathit{eff}}$ | $\widehat{\mathit{R}}$ |
---|---|---|---|---|---|---|---|---|---|

LL–AH | $\beta $ | 0.764 | 0.007 | 0.385 | −0.073 | 0.800 | 1.421 | 3228 | 1.001 |

$\alpha $ | 1.636 | 0.004 | 0.197 | 1.261 | 1.629 | 2.039 | 2930 | 1.000 | |

k | 0.879 | 0.002 | 0.107 | 0.688 | 0.873 | 1.109 | 3681 | 1.001 | |

W–AH | $\beta $ | −0.007 | 0.014 | 0.949 | −1.850 | −0.019 | 1.860 | 4377 | 1.000 |

$\alpha $ | 0.984 | 0.001 | 0.085 | 0.821 | 0.982 | 1.152 | 3521 | 1.000 | |

k | 0.559 | 0.001 | 0.068 | 0.437 | 0.554 | 0.702 | 3875 | 1.001 | |

BXII–AH | $\beta $ | 0.678 | 0.007 | 0.378 | −0.135 | 0.697 | 1.345 | 3291 | 1.000 |

$\alpha $ | 1.627 | 0.004 | 0.209 | 1.247 | 1.620 | 2.062 | 3099 | 1.000 | |

k | 0.949 | 0.002 | 0.115 | 0.740 | 0.943 | 1.186 | 3932 | 1.000 |

Model | WAIC | LOOIC |
---|---|---|

GLL–AH | 243.20 | 243.20 |

GLL–PO | 251.40 | 251.42 |

GLL–AFT | 251.80 | 251.90 |

GLL–PH | 254.80 | 254.82 |

**Table 8.**Bayesian model comparison for the GLL–AH and its special cases including LL–AH, W–AH, and BXII–AH models.

Model | WAIC | LOOIC |
---|---|---|

GLL–AH | 243.20 | 243.20 |

LL–AH | 249.30 | 249.40 |

W–AH | 255.01 | 255.00 |

BXII–AH | 247.05 | 247.08 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Muse, A.H.; Chesneau, C.; Ngesa, O.; Mwalili, S.
Flexible Parametric Accelerated Hazard Model: Simulation and Application to Censored Lifetime Data with Crossing Survival Curves. *Math. Comput. Appl.* **2022**, *27*, 104.
https://doi.org/10.3390/mca27060104

**AMA Style**

Muse AH, Chesneau C, Ngesa O, Mwalili S.
Flexible Parametric Accelerated Hazard Model: Simulation and Application to Censored Lifetime Data with Crossing Survival Curves. *Mathematical and Computational Applications*. 2022; 27(6):104.
https://doi.org/10.3390/mca27060104

**Chicago/Turabian Style**

Muse, Abdisalam Hassan, Christophe Chesneau, Oscar Ngesa, and Samuel Mwalili.
2022. "Flexible Parametric Accelerated Hazard Model: Simulation and Application to Censored Lifetime Data with Crossing Survival Curves" *Mathematical and Computational Applications* 27, no. 6: 104.
https://doi.org/10.3390/mca27060104