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Abstract: This study aims to propose a flexible, fully parametric hazard-based regression model
for censored time-to-event data with crossing survival curves. We call it the accelerated hazard
(AH) model. The AH model can be written with or without a baseline distribution for lifetimes.
The former assumption results in parametric regression models, whereas the latter results in semi-
parametric regression models, which are by far the most commonly used in time-to-event analysis.
However, under certain conditions, a parametric hazard-based regression model may produce more
efficient estimates than a semi-parametric model. The parametric AH model, on the other hand,
is inappropriate when the baseline distribution is exponential because it is constant over time;
similarly, when the baseline distribution is the Weibull distribution, the AH model coincides with
the accelerated failure time (AFT) and proportional hazard (PH) models. The use of a versatile
parametric baseline distribution (generalized log-logistic distribution) for modeling the baseline
hazard rate function is investigated. For the parameters of the proposed AH model, the classical (via
maximum likelihood estimation) and Bayesian approaches using noninformative priors are discussed.
A comprehensive simulation study was conducted to assess the performance of the proposed model’s
estimators. A real-life right-censored gastric cancer dataset with crossover survival curves is used
to demonstrate the tractability and utility of the proposed fully parametric AH model. The study
concluded that the parametric AH model is effective and could be useful for assessing a variety of
survival data types with crossover survival curves.

Keywords: Bayesian inference; hazard-based regression model; survival analysis; accelerated hazard
model; generalized log-logistic distribution; crossover survival curves; censored data; maximum
likelihood estimation.

1. Introduction

In the analysis of lifetime data, hazard-based regression models have played a pivotal
role. Such models produce a much more versatile framework for modeling survival
data. They also make it conceivable to easily interpret the parameters from a practical
perspective. When using regression models to analyze lifetime data, the Cox proportional
hazard (PH) [1,2] model is the most widely assumed semi-parametric framework. The
PH model’s main assumption is that the hazard ratios are proportional over time. When
such assumptions are not validated by data, alternative survival regression models, such as
the accelerated failure time (AFT) [3,4], and proportional odds (PO) [5] models might be
applied in the analysis. However, none of them are appropriate for capturing lifetime data
with crossing survival and hazard curves [6].
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This kind of issue is frequently associated with clinical trials, including control and
treatment groups. The survival function (SF) of one group may degrade swiftly while the
SF of the other group decays slowly. The curves tend to meet at some point, resulting in
an inversion in terms of who is on the bottom/top. The study of this change is essential
in many clinical studies because determining the crossing time reveals when the target
treatment for an illness can be judged beneficial [6].

In practice, time-to-event data with crossing survival curves can occur for a variety of
reasons. Crossing survival curves, according to Breslow [7], may occur when a treatment
has an early rapid benefit and then becomes equally or worse than placebo treatment after
such a time period. Additionally, as described in Diao et al. [8], crossing survival curves
may occur in clinical studies when a particular intensive treatment (i.e., surgery) may have
negative consequences at first but show good results in the long term.

Several techniques have been presented in the literature to handle this crossover
feature in time-to-event data. The most often used are based on regression coefficients that
change over time; see, for instance, Egge and Zahl [9], Putter et al. [10], Shyur et al. [11],
and Zhang et al. [12]. Two recent works considering the modeling and analysis of time-
to-event data with crossing survival curves are [6,13]. For this type of problem, Chen
and Wang [14] developed a semi-parametric two-sample framework. The two-sample
feature refers to a scenario in which there is a control, and a treatment group, which can be
readily represented by a binary variable. The AH model is an intriguing choice because it
formulates similarly to the PH and AFT models. In their model, they leave the baseline
hazard rate function (HRF) undefined. As an alternative to the PO or AFT models, their
model relaxes the proportional hazard assumption while still allowing for the inclusion of
both time-independent and time-dependent factors.

Although they offered an exploratory visual examination of the model’s suitability,
they did not completely cover statistical model checking of the proposed model. Chen and
Jewell [15] presented the AH model and its applicability to censored survival data. They
used the AH model to analyze real data from a randomized clinical study of biodegradable
carmustine polymers for the treatment of brain cancer. This analysis illustrated the model’s
useful applications and the recommended test statistics.

The semi-parametric AH model estimators, on the other hand, include the unknown
distribution in the asymptotic variance. Thus, numerically demanding approaches are
required to make an inference about this parameter. As a result, Lee [16] suggested a
straightforward estimation method for the semi-parametric AH model in which estimators
are asymptotically normal with a distribution-free asymptotic variance. This also yields
several lack-of-fit tests. These tests are similar to Gill–Schumacher tests in that the esti-
mating functions are assessed at two separate weight functions, generating two estimators
that are close to each other. They demonstrated that the estimators and tests perform well
for some weight functions using numerical experiments. For more information about the
estimators and tests for the semi-parametric AH model, we refer to [17].

Cox [1] pioneered the use of semi-parametric hazard-based regression models for
univariate time-to-event data with the PH model. Rubio et al. [18] and Khan [19] presented
two influential papers that propose the use of extended lifetime distributions to substitute
the baseline hazard in a time-to-event analysis. The formulation of parametric hazard-based
regression models is a central issue in Lawless [20]. The authors explored the benefits of
using parametric hazard-based regression models. It is noticed that the baseline-modified
distribution should be chosen based on its flexibility to incorporate varied failure rate
shapes. A few examples include: Muse et al. [21], Muse et al. [22], Ashraful-Ul-Alam
and Khan [23], Alvares and Rubio [24], Muse et al. [25], Al-aziz et al. [26], and Khan and
Khosa [27].

Despite the numerous advantages of the semi-parametric AH framework, its imple-
mentation in applications appears to be restricted, owing to the technical difficulties in
implementing theoretical breakthroughs. Estimation for the covariance matrices is chal-
lenging when the data are censored because the asymptotic covariance matrices for the
regression estimators in this model involve the unknown baseline HRF and its derivative.
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However, censored data present a new technological barrier. Numerically demanding
approaches, such as resampling techniques, can be used to approximate the covariance ma-
trices. However, they are inefficient in actual settings due to their high computing cost [28].

The current study presents a fully parametric hazard-based regression model to fit the
AH model to address the aforementioned concerns. The fundamental idea is to represent
the baseline hazard by using a generalized log-logistic (GLL) distribution that is closed
under both the AFT [25] and PH [22] frameworks and may incorporate various hazard
rate shapes data including monotone and non-monotone shapes. Another advantage of
the baseline is that it encompasses some of the most parametric distributions used in
reliability and survival studies, such as log-logistic (LL), Burr XII with both 2-parameter
and 3-parameter cases, Weibull, and exponential distributions. The shared tractability of
parametric regression models and the adaptability of semi-parametric regression models is
another appealing aspect of the suggested parametric AH model.

Thus, the main contribution of this study is to introduce and study a novel, flexible,
parametric AH model to incorporate right-censored lifetime data with crossing survival
curves. This is done by assuming the GLL lifetime distribution to deal with the baseline
hazard in the parametric AH model. To the best of the author’s knowledge, we emphasize
that using the parametric AH model with GLL baseline distribution hazard to extend
the original AH semi-parametric model has never been considered in the literature. The
methods are studied by using the classical and Bayesian frameworks for a more comprehen-
sive presentation of models for all statistical audiences to consider. A detailed simulation
study is also being developed. This entails introducing one binary and one continuous
covariate into the baseline hazard. The reader should be aware that the majority of the
single covariate scenarios have been researched in prominent references, such as [8].

Additionally, the following are some significant benefits of the methodology
proposed here.

i. It possesses the adaptability of parametric survival regression models.
ii. It offers a continuous SF that makes it simple to find where two survival curves

overlap.
iii. It allows different shapes for the HRF and has the tractability of a parametric survival

regression model.

The following is a brief description of the sections that compose the article. Section 2
discusses the formulation of the parametric AH model and associated probabilistic func-
tions. Section 3 presents the baseline distribution under consideration, as well as alternative
competing lifetime distributions, including some of its special cases. The proposed para-
metric AH model with GLL baseline distribution HRF and its submodels are presented
in Section 4. Section 5 discusses the model inferential procedures. Section 6 performs the
simulation studies. Section 7 demonstrates a real-life, right-censored cancer dataset with
crossed survival curves. Section 8 concludes the study with some farewell remarks and
suggests future research.

2. AH Model Formulation

In order to handle lifetime data with crossing of hazard and survival curves, Chen
and Weng [14] proposed a hazard-based regression model known as the AH model that is
expressed as follows:

h(t; x) = h0
(
tψ
(

x′β
))

= h0

(
tex′β

)
, (1)

where ψ(x′β) = ex′β is the link function of the explanatory variables, x =
(

x1, x2, . . . , xp
)

is a vector of covariates, β′ =
(

β1, β2, . . . , βp
)

is a vector of coefficients of regression, and
h0(t) corresponds to the baseline hrf.

In this model, ex′β characterizes how the explanatory variables into x change the time
scale of the underlying HRF. In this case, β < 0 or β > 0 imply deceleration or acceleration
of the HRF’s time scale, respectively. For example, if one explanatory variable has a value
of 1 for a treatment group and a value of 0 for a control group, then eβ = 1

2 indicates that
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the HRF of the treatment group advances in half the time as those in the control group.
The same is true for eβ = 2, which indicates that the HRF of the treatment group advances
twice as quickly as those in the control group. There are no differences between the groups,
according to eβ = 1.

The AH model offers some appealing and intriguing characteristics. The AH model,
unlike the AFT and PH models, can handle the crossing of survival and hazard curves [29].
Furthermore, the AH framework enables both the control and treatment groups’ hazard
curves to begin at the same time point. This is especially beneficial in randomized controlled
trials, because it is more reasonable to hypothesize that the hazard or risk between groups
is comparable at t = 0 [30].

The inability of the parametric AH model to incorporate situations where the HRF
is constant over time is a limitation that is not shared by the AFT and PH models (e.g.,
exponential distribution) [28]. As a result, before implementing this model, it is crucial to
assess the non-constancy of the baseline function. The AH model, like the AFT and PH
models, has coincidences when the baseline HRF is a Weibull distribution [31].

As an alternative, the cumulative hazard function (CHF) can be used to represent the
parametric AH model as follows:

H(t; x) = H0

(
tex′β

)
e−x′β, (2)

where H0(t) denotes the baseline CHF.
The other probabilistic functions for the parametric AH model, associated with

Equation (2), can be expressed as follows.
The sf for the parametric AH model is

S(t; x) =
[
S0

(
tex′β

)]e−x′β

, (3)

where S0(t) denotes the baseline SF. The cumulative distribution function (CDF) for the
parametric AH model is

F(t; x) = 1−
[
S0

(
tex′β

)]e−x′β

. (4)

The probability density function (PDF) for the parametric AH model is

f (t; x) = f0

(
tex′β

)[
S0

(
tex′β

)]e−x′β

, (5)

where f0(t) denotes the baseline PDF.

3. Baseline Hazard

Standard parametric models using several prominent survival distributions are com-
monly used in survival data analysis. The LL distribution is one of the most commonly
utilized in oncology research, owing to the flexibility of its HRF and the ability to estimate its
parameters. We frequently have datasets in medical research that demand more advanced
parametric models. To do this, the literature has introduced new classes of parametric
distributions based on the modification of the LL distribution. Specific situations include
the GLL distribution [32], Kumaraswamy LL (KuLL) distribution [33], heavy-tailed LL
(HTLL) distribution [34], tan LL (TLL) distribution [35], a novel LL (NLL) distribution [36],
arctan LL distribution [37], and an extended LL (ELL) distribution [38], among others [39].

For fully parametric hazard-based regression models, we must assume a parametric
form for the baseline, of which there are an infinite number of options, and which one
is appropriate will generally depend on the situation. We analyze a general-purpose
candidate, the chosen GLL distribution presented by Khan and Khosa [27], in this paper.
The GLL distribution is constructed by using the AH framework, and it is then contrasted
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with various baseline hazards that can take into account different hazard rate shapes as
well as some of its special case distributions.

The HRF and the CHF of the GLL distribution are expressed as follows:

hGLL(t; θ) =
αk(kt)α−1

1 + (ηt)α
, t ≥ 0, k, α, η > 0, (6)

HGLL(t; θ) =
kα

ηα
log[1 + (ηt)α], t ≥ 0, k, α, η > 0, (7)

where θ represents the vector of the involved parameters.
The HRF in Equation (6) consists of different submodels of the GLL distribution [32].

These distributions are listed as follows:
Log-logistic (LL): when k = η, Equation (6) reduces to the hrf of the LL distribution,

which is

hLL(t; θ) =
αk(kt)α−1

1 + (kt)α
, t ≥ 0, k, α > 0. (8)

Burr-XII (BXII): when η = 1, equation (6) reduces to the hrf of the BXII-2 distribution,
which is

hBXII(t; θ) =
αk(kt)α−1

1 + tα
, t ≥ 0, k, α > 0. (9)

Weibull (W): when η → 0, Equation (6) reduces to the hrf of the W distribution,
which is

hW(t; θ) = αk(kt)α−1, t ≥ 0, k, α > 0. (10)

In this work, we compare the proposed baseline hazard to its submodels as well as
three additional baseline hazard candidates that can be incorporated for both monotone
and nonmonotone hazard rate shapes: the power generalized Weibull (PGW) model [40],
exponentiated Weibull (EW) model [41], and the generalized gamma (GG) model [42]. The
corresponding distributions have comparable levels of adaptability and tractability. The
following are the HRF functions for the PGW, EW, and GG distributions, respectively:

hPGW(t; θ) =
α

ηkα
tα−1

[
1 +

(
t
k

)α]( 1
η−1

)
, t ≥ 0, k, α, η > 0, (11)

hGG(t; θ) =

η

Γ
(

α
η

)
kα

tα−1e−(
t
k )

η

1−
γ
(

α
η ,( t

k )
η
)

Γ
(

α
η

) , t ≥ 0, k, α, η > 0, (12)

where γ(t, x) and Γ(x) denote the incomplete and complete gamma functions,
respectively, and

hEW(t; θ) =
αkη(kt)α−1

[
1− e−(kt)α

]η−1
ee−(kt)α

1−
[
1− e−(kt)α]η , t ≥ 0, k, α, η > 0. (13)

We also used the gamma (G) and log-normal (LN) distributions, two additional
popular classical distributions used in survival and reliability research.

4. The Proposed Model

There are several approaches to expressing parametric hazard-based regression models.
The AH model formulation is one such strategy. The GLL hazard-based regression model
can be written in the context of the AH framework by substituting the exponential function
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for the link function in Equation (1). We recall that the HRF under the AH framework is
computed as follows:

h(t) = h0

(
tex′β

)
.

We begin with the GLL baseline distribution HRF with parameters α, η, and k (with
the AH model notations). The HRF with an explanatory variable vector x is as follows:

h(t; θ, β, x) = h0

(
tex′β; θ

)
=

αk(kt∗)α−1

1 + (ηt∗)α , (14)

which is the GLL HRF with t∗ = tex′β once more. In addition, the other survival
probabilistic functions for the GLL–AH framework are expressed as follows.

The SF for the GLL–AH model is

S(t; θ, β, x) =
[
S0

(
tex′β; θ

)]e−x′β

=
[
1 +

(
ηtex′β

)α] kαe−x′β
ηα

. (15)

The CDF for the GLL–AH model is

F(t; θ, β, x) = 1−
[
S0

(
tex′β; θ

)]e−x′β

= 1−
[
1 +

(
ηtex′β

)α] kαe−x′β
ηα

. (16)

The CHF for the GLL–AH model is

H(t; θ, β, x) = H0

(
tex′β; θ

)
e−x′β =

(
kα

ηα
log
[
1 +

(
ηtex′β

)α])
e−x′β. (17)

The PDF for the GLL–AH model is

f (t; θ, β, x) = f0

(
tex′β; θ

)[
S0

(
tex′β; θ

)]e−x′β

=
αk
(

ktex′β
)α−1

[
1 +

(
ηtex′β

)α
] kα

ηα +1

[
1 +

(
ηtex′β

)α] kαe−x′β
ηα

. (18)

4.1. Submodels

The proposed parametric hazard-based GLL–AH model framework has three sub-
models that are also closed under the AH framework.

4.1.1. Submodel I: η = 1

If we put η = 1 in Equation (14), we get the HRF of the BXII–AH model, which is
expressed mathematically as

h(t; x) =
αk
(

ktex′β
)α−1

1 +
(
tex′β

)α . (19)

4.1.2. Submodel II: η = k

If we put η = k in Equation (14), we are referred to the HRF of the LL–AH model,
which is stated mathematically as

h(t; x) =
αk
(

ktex′β
)α−1

1 +
(
ktex′β

)α . (20)
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4.1.3. Submodel III: ηα → 0.

If we put ηα → 0 in Equation (14), we are referred to the HRF of the W–AH model,
which is stated mathematically as

h(t; x) = αk
(

ktex′β
)α−1

. (21)

5. Inferential Procedures

In this section, the parameters of the proposed parametric AH model with GLL
baseline distribution HRF are estimated by using a classical approach (via the maximum
likelihood estimation (MLE) method) and Bayesian inference using noninformative priors.

5.1. Classical Approach

We are concerned in this subsection with a full likelihood function for the proposed
parametric AH model. The likelihood function is an important component not only in
the Bayesian approach but also in classical inference, in which the standard approach
for estimating parameters involves maximizing it. Consider both noninformative and
independent (right) censorship.

Suppose there are n individuals with survival times denoted by T1, T2, . . . , Tn. Assum-
ing that the data are subject to right censoring, we observe ti = min(Ti, RCi), where RCi > 0
being the censoring time for individual i. Letting δi = I(Ti ≤ RCi) that equals 1 if Ti ≤ RCi
and 0 otherwise, the observed data for individual i consists of {ti, δi, xi}, i = 1, 2, . . . , n,
where ti is a survival time or censoring time according to whether δi = 1 or 0 , respectively,
and xi =

(
xi1, xi2, . . . , xip

)′ is a p× 1 column vector of external covariates.
When considering a parametric AH model, the censored likelihood function can be

written as follows:

L(θ, β; D) =
n

∏
i=1

[ f (ti; θ, β, xi)]
δi [S(ti; θ, β, xi)]

1−δi

=
n

∏
i=1

[
h(ti; θ, β, xi)

S(ti; θ, β, xi)

]δi

[S(ti; θ, β, xi)]
1−δi

=
n

∏
i=1

[h(ti; θ, β, xi)]
δi S(ti; θ, β, xi)

=
n

∏
i=1

[h(ti; θ, β, xi)]
δi exp[−H(ti; θ, β, xi)]

=
n

∏
i=1

[
h0

(
tiex′i β; θ

)]δi
exp

[
−H0

(
tiex′i β; θ

)
e−x′i β

]
,

(22)

where D = (ti, δi, xi, i = 1, 2, . . . , n) represents the observed data, which includes survival
times, censoring time, and covariates. In our expression, we recall that θ is the vector
of baseline distributional parameters, and β is the regression coefficients. An iterative
optimization approach can be used to produce the MLE (e.g., the Newton–Raphson algo-
rithm). Because the MLEs are approaching normalcy, various hypothesis tests and interval
constructions of model parameters are conceivable.

The log-likelihood function is expressed as follows:

`(θ, β; D) =
n

∑
i=1

δi log
[

h0

(
tex′i β; θ

)]
−

n

∑
i=1

H0

(
tiex′i β; θ

)
e−x′i β. (23)
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The GLL–AH model’s full log-likelihood function is expressed as follows:

`(θ, β; D) =
n

∑
i=1

δi log(α) +
n

∑
i=1

δiα log(k) + (α− 1)
n

∑
i=1

δi log
(

tiex′i β
)

−
n

∑
i=1

δi log
[
1 +

(
ηtiex′i β

)α]
−
(

k
η

)α n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]
.

(24)

To obtain the MLE of θ′ = (k, α, η), and β, we can directly maximize Equation (24)
with respect to (k, α, η), and β. Alternatively, we can express the first derivative of the log-
likelihood function in order to solve the nonlinear equations below for the log-likelihood
function’s first derivative.

With this aim, let us set ϕ = (k, α, η, β). Then the first derivatives of the log-likelihood
functions are as follows:

∂`(ϕ)

∂α
=

1
α

n

∑
i=1

δi +
n

∑
i=1

δi log(k) +
n

∑
i=1

δi log
(

tiex′i β
)

−
n

∑
i=1

δi

(
ηtiex′i β

)α
log
(

ηtiex′i β
)

1 +
(

ηtiex′i β
)α

−
(

k
η

)α

log(k)
n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]
+

(
k
η

)α

log(η)
n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]

−
(

k
η

)α n

∑
i=1

e−x′i β
(

ηtiex′i β
)α

log
(

ηtiex′i β
)

1 +
(

ηtiex′i β
)α ,

(25)

∂`(ϕ)

∂η
= −

(
α

η

) n

∑
i=1

δi

(
ηtiex′i β

)α

1 +
(

ηtiex′i β
)α

+

(
α

η

)(
k
η

)α n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]

−
(

α

η

)(
k
η

)α n

∑
i=1

e−x′i β
(

ηtiex′i β
)α

1 +
(

ηtiex′i β
)α ,

(26)

∂`(ϕ)

∂k
=
(α

k

) n

∑
i=1

δi −
(α

k

)( k
η

)α n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]
(27)

and

∂`(ϕ)

∂β j
= (α− 1)

n

∑
i=1

δixij − α
n

∑
i=1

δixij

(
ηtiex′i β

)α

1 +
(

ηtiex′i β
)α

+

(
k
η

)a n

∑
i=1

xij log
[
1 +

(
ηtiex′i β

)α]
.

(28)

5.2. Bayesian Approach

In this subsection, the prior distributions for the parameters of the proposed model
are first established, and these distributions are then multiplied by the likelihood function
to create the Bayesian model.
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5.2.1. Prior Distribution

The formulation of a prior distribution is a crucial step in every Bayesian approach.
This is especially true for fully parametric survival regression models. Because we lack
prior knowledge from historical data or from prior experiments, we set the prior scenario
in this study using a noninformative independent gamma distribution, Gamma (10, 10),
as the baseline distribution parameters. Gamma distributions are flexible and include
noninformative priors (uniform) and the marginal priors distribution for each regression
coefficient is taken as a normal distribution centered at zero with a wide known variance
(0, 100). Numerous study articles in the literature, such as [19,22,24–26,43], take these priors
into account. Here, we consider

π(α) ∼ G(a1, b1) =
ba1

1
Γ(a1)

αa1−1e−b1α; a1, b1, α > 0, (29)

π(η) ∼ G(a2, b2) =
ba2

2
Γ(a2)

ηa2−1e−b2η ; a2, b2, η > 0, (30)

π(k) ∼ G(a3, b3) =
ba3

3
Γ(a3)

ka3−1e−b3k; a3, b3, k > 0. (31)

From historical data of the baseline distribution, it is simple to determine the hy-
perparametric values of the prior distributions [32]. When the explanatory variables are
assumed to have a prior normal distribution, we have the following regression coefficients:

π
(

β′
)
∼ N(a4, b4). (32)

The joint prior distribution of all unknown parameters has a PDF given by

π
(
α, k, η, β′

)
= π(α)π(η)π(k)π

(
β′
)
. (33)

5.2.2. Likelihood Function

The likelihood function for the GLL general hazard model is computed as follows:

LGLL−AH(θ, β; D) = =
n

∏
i=1

[
h0

(
tiex′i β; θ

)]δi
exp

[
−H0

(
tiex′i β; θ

)
e−x′i β

]

=
n

∏
i=1

αk
(

ktiex′i β
)α−1

1 +
(

ηtiex′i β
)α


δi

exp
[
−
{

kα

ηα
log
[
1 +

(
ηtiex′i β

)α]}
e−x′i β

]
.

(34)

5.2.3. Posterior Distribution

The joint posterior PDF is expressed as the multiplication of the likelihood function in
Equation (34) and the prior distribution in Equation (33):

p(α, k, η, β; t) ∝
n

∏
i=1

αk
(

ktiex′i β
)α−1

1 +
(

ηtiex′i β
)α


δi

exp
[
−
{

kα

ηα
log
[
1 +

(
ηtiex′i β

)α]}
e−x′i β

]
× π

(
α, k, η, β′

)
,

(35)

where the prior specification for the unknown parameters is represented by the first four
terms on the right-hand side of the equation.
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The joint posterior PDF is analytically intractable because of how challenging it is to
integrate. Therefore, the inference can be supported by the Markov chain Monte Carlo
(McMC) simulation methods, including the Gibbs sampler and Metropolis–Hastings algo-
rithms, which can be used to generate samples from which features of the relevant marginal
distributions can be inferred.

6. Simulation Study

In this section, we offer a thorough Monte Carlo (MC) simulation analysis to assess
how well the suggested model performs in terms of estimating the parameters of the
baseline distribution and the regression coefficients. There are two inferential techniques
used in the analysis.

I. Procedure I: An MLE estimate technique.
II. Procedure II: A Bayesian estimation technique with independent gamma priors for

the baseline distribution parameters and a normal prior for the regression coefficients,
as well as non-informative priors.

Two explanatory variables in an AH regression framework were considered in all
simulations: one binary covariate (x1) generated from Bernoulli (0.5) distribution and one
continuous covariate (x2) generated from the standard normal distribution. Regression
parameter values were chosen to be β = (0.75, 0.5) corresponding to the covariate vector
x = (x1, x2)

′.
The GLL baseline distribution hazard was used to generate the survival data, and the

exponential distribution with a rate parameter equal to the censoring proportion of 10%
was used to generate the censoring times.

We were particularly interested in the performance and accuracy of the proposed
model’s estimators in the simulation exercise, specifically the bias, standard error, and
mean square error. The simulation’s findings were derived from 500 replications with 50,
100, 300, and 500 samples for each parameter value. The results are shown in Table 1, which
includes the mean estimate (est), standard error (SE), average bias (AB), mean square error
(MSE), and coverage probability for the MLE estimates for both inferential techniques. The
estimates’ averages are extremely close, and generally, the AB and MSE are less as sample
size rises. Additionally, as sample sizes are increased, estimates for all evaluated parameters
perform better. We also note that, compared to MLE estimates, Bayesian estimates have a
lower SE.

Similar results were obtained from a simulation analysis with around 20% censored
observations for each dataset (data not shown). In conclusion, our simulation work has
shown that the suggested parametric AH model may prove to be a highly helpful paramet-
ric hazard-based regression model to accurately represent survival data with or without
crossover survival curves.

Table 1. Simulation study for GLL–AH regression model. True values (True), Estimates (Est.),
standard error (SE), average bias (AB), mean square error (MSE), and coverage probability (CP 95%)
are presented for the parameters.

True Est. SE AB MSE CP Est. SE AB MSE R̂
Set I n = 50

M2 MLE Approach Bayesian

β1 0.75 0.800 0.100 0.050 0.037 93.85 0.790 0.002 0.040 0.036 1.002
β2 0.5 0.558 0.042 0.058 0.024 94.50 0.512 0.003 0.012 0.011 1.002
α 1.50 1.590 0.010 0.090 0.008 95.20 1.505 0.001 0.005 0.003 1.000
k 0.75 0.900 0.435 0.150 0.063 92.05 0.850 0.005 0.100 0.045 1.002
η 1.20 1.265 0.011 0.065 0.046 94.25 1.212 0.000 0.012 0.004 1.003
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Table 1. Cont.

True Est. SE AB MSE CP Est. SE AB MSE R̂
Set II n = 100

M2 MLE approach Bayesian

β1 0.75 0.790 0.100 0.040 0.036 94.10 0.770 0.001 0.020 0.018 1.000
β2 0.5 0.530 0.030 0.030 0.024 94.80 0.510 0.002 0.010 0.010 1.001
α 1.50 1.610 0.040 0.110 0.087 93.40 1.553 0.001 0.053 0.041 1.003
k 0.75 0.850 0.250 0.100 0.056 93.20 0.800 0.004 0.050 0.037 1.002
η 1.20 1.250 0.008 0.050 0.034 94.80 1.205 0.000 0.005 0.003 1.001

Set III n = 300
True Est. SE AB MSE CP Est. SE AB MSE R̂

M2 MLE approach Bayesian

β1 0.75 0.78 0.092 0.030 0.032 94.40 0.768 0.001 0.018 0.016 1.000
β2 0.5 0.525 0.013 0.025 0.021 93.90 0.503 0.001 0.003 0.002 1.000
α 1.50 1.592 0.021 0.042 0.030 93.85 1.506 0.001 0.006 0.006 1.001
k 0.75 0.844 0.212 0.094 0.049 93.46 0.798 0.003 0.048 0.036 1.000
η 1.20 1.252 0.008 0.052 0.034 94.60 1.205 0.000 0.005 0.003 1.001

True Est. SE AB MSE CP Est. SE AB MSE R̂

Set IV n = 500

M2 MLE approach Bayesian

β1 0.75 0.775 0.065 0.025 0.017 95.10 0.752 0.000 0.002 0.002 1.000
β2 0.5 0.526 0.013 0.026 0.021 94.00 0.503 0.001 0.003 0.002 1.000
α 1.50 1.550 0.040 0.050 0.037 94.70 1.503 0.001 0.003 0.001 1.000
k 0.75 0.825 0.110 0.075 0.048 94.07 0.780 0.003 0.030 0.027 1.001
η 1.20 1.205 0.005 0.005 0.003 95.04 1.203 0.000 0.003 0.001 1.001

7. Applications

This section examines a right-censored dataset from an oncology clinical trial with
crossover survival curves to show how the proposed parametric AH model can be used
to model lifetime data with crossing survival curves. First, the Rstan package’s Bayesian
analysis of the AH model and its competing models, such as the PH, PO, and AFT models,
is provided. After performing a traditional analysis with the MLE technique, add model
comparison. Next, by using a frequentist estimation approach, regression analyses were
conducted by using the proposed baseline hazard (GLL), power generalized Weibull
(PGW), generalized gamma (GG), exponentiated Weibull (EW), log-logistic (LL), and
Weibull (W) distributions as a baseline to AH models, and the fits were compared by
using information criteria (Akaike information criterion (AIC), Consistent AIC (CAIC), and
Hannan–Quinn information criterion (QIC)). The GLL–AH and its submodels are then
used to do a Bayesian analysis.

7.1. Gastric Cancer Dataset

We look at the Gastrointestinal Tumor Study Group’s gastric cancer data collection
(1982). This dataset has frequently been used in studies involving crossing survival curves,
particularly in the field related to survival analysis. A few instances include Demarqui and
Mayrink [6] and Diao et al. [8]. The dataset is freely accessible under the label “gastric” by
using the R package AmoudSurv [44].

This oncology clinical trial includes 90 patients who have been diagnosed with locally
advanced gastric cancer. The patients were randomly assigned to the following groups:
(i) a control group, which included 45 patients who got chemotherapy; and (ii) a treatment
group, which included 45 patients who received radiation therapy along with chemother-
apy. In this study, these patients were followed for around 5 years. For each patient, three
variables are reported in the datasets: the response time, which indicates failure (time to
death) or right censoring (the censoring proportion in this data set is around 12.22%), a
binary failure indicator, which identifies patients who experienced the event of interest,
and a group binary indicator with 1, indicating the type of treatment.
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Figure 1 shows the overall survival curve for the gastric cancer dataset as well as the
survival curves for the two types of therapies (chemotherapy vs. chemotherapy mixed with
radiotherapy) used to treat locally unresectable gastric cancer. Close inspection reveals
crossovers and crossings between the curves, which supports the AH model’s efficacy and
suitability for this data analysis. The fundamental non-parametric plots for the survival
time of the gastric cancer dataset are presented in Figure 2.

Figure 1. Illustrating the overall survival curve and the crossing survival curves for the two types
of treatment.
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Figure 2. Fundamental plots for the survival time of the gastric cancer dataset.

7.2. Classical Analysis

The MLE estimates for baseline distribution parameters and coefficients of regres-
sion for the proposed AH model with different baseline distributions and other survival
regression models with the GLL baseline distribution are provided in Tables 2 and 3.

Table 2 summarizes the statistics for the GLL–AH model and other survival regression
models, including the PH, PO, and AFT models with all GLL baseline distributions. Based
on the information criterion values, we conclude that the GLL–AH model has the lowest
AIC, CAIC, and HQIC values compared to the other survival regression models, which
indicates that the GLL–AH model outperforms its competing models.

Table 2. Results from the fitted proposed fully parametric AH regression model and other survival
regression models with the GLL baseline distribution to gastric cancer dataset.

Models Parameter(s) Estimate SE AIC CAIC HQIC

GLL-AH β 2.690 0.021 244.318 242.845 248.351
α 1.505 0.040
k 0.542 0.036
η 0.133 0.022

GLL-PO β 0.750 0.101 251.816 250.522 255.848
α 1.382 0.100
k 0.650 0.074
η 0.500 0.042

GLL-PH β 0.130 0.241 255.565 254.345 259.598
α 1.302 0.140
k 0.759 0.136
η 0.580 0.222

GLL-AFT β 0.540 0.135 252.139 250.851 256.171
α 1.545 0.127
k 0.557 0.106
η 0.728 0.231
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The statistics summary under the GLL–AH model, and other AH models with different
baseline distributions are presented in Table 3. Based on the information criteria values,
we deduce that the GLL–AH model beats its rival AH models becaue it has the lowest
AIC, CAIC, and HQIC values when compared to the other AH models with various
baseline distributions.

Table 3. Results from the fitted proposed fully parametric AH regression model with different
baseline distributions to gastric cancer dataset.

Models Parameter(s) Estimate SE AIC CAIC HQIC

GLL-AH β 2.690 0.021 244.318 242.845 248.351
α 1.505 0.040
k 0.542 0.036
η 0.133 0.022

PGW-AH β 1.930 0.082 251.186 249.878 255.218
α 1.687 0.142
k 0.821 0.066
η 2.226 0.102

GG-AH β 2.688 0.130 252.645 251.368 256.677
α 1.821 0.122
k 0.482 0.236
η 0.737 0.042

EW-AH β 2.066 0.110 252.667 251.390 256.699
α 0.789 0.212
k 0.911 0.086
η 2.283 0.052

LL-AH β 1.097 0.020 247.492 246.686 250.517
α 1.913 0.052
k 1.213 0.019

LN-AH β 0.261 0.120 263.830 263.197 266.854
α 0.065 0.101
k 1.260 0.032

BXII-AH β 0.923 0.142 249.144 248.359 252.168
α 0.880 0.119
k 1.890 0.120

W-AH β 2.581 0.214 256.776 256.078 259.800
α 1.013 0.049
k 1.818 0.112

G-AH β 2.367 0.430 255.121 254.406 258.145
α 1.495 0.039
k 1.252 0.123

7.3. Likelihood Ratio Test

The proposed AH model with the GLL baseline distribution is compared to its sub-
models, which include the log-logistic AH, Burr-XII AH, and Weibull AH models, by using
the likelihood ratio test (LRT). It is required to reduce the number of parameters in a model
and evaluate how this affects the model’s capacity to match the data in order to draw
thorough statistical conclusions about the model. In Table 4, statistics and related P-values
demonstrate that the GLL–AH model fits the gastric dataset with crossing survival curves
better than its submodels.
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Table 4. LRT test for the GH model and its submodels.

Model Hypothesis LRT p-Value

GLL-AH vs. BXII-AH H0 : η = 1, H1 : H0 is false, 6.999 0.008

GLL-AH vs. LL-AH H0: η = k, H1 : H0 is false, 5.347 0.021

GLL-AH vs. W-AH H0: ηα → 0, H1 : H0 is false, 14.533 <0.001

7.4. Bayesian Analysis

We used Bayesian analysis to compare the proposed GLL–AH model with its com-
peting models, such as the GLL–PH, GLL–AH, and GLL–AFT models, and some of its
submodels, including the LL–AH, BXII–AH, and W–AH regression models. The baseline
distribution parameters α ∼ G(a1, b1), η ∼ G(a2, b2), and k ∼ G(a3, b3) with hyperparame-
ter values (a1 = b1 = a2 = b2 = a3 = b3 = 10) are assumed to have separate gamma priors
that are independent and noninformative normal prior with a value of N(0, 100) for β′s
(regression coefficients). The Rstan package was utilized for our analysis [45].

7.4.1. Numerical Summary

In this section, we used the McMC sample of posterior properties for the proposed
fully parametric AH, PO, AFT, and PH models with the GLL baseline distribution in Table 5
to examine several posterior characteristics of interest and their numerical values. The
submodels of the GLL baseline distribution using the AH model are also examined in
Table 6 to assess several posterior characteristics of interest and their numerical values.

Table 5. Results for the posterior properties of the GLL–AH, GLL–PO, GLL–PH and GLL–AFT
models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Ne f f R̂

GLL–AH β 1.016 0.009 0.476 0.030 1.027 1.909 2684 1.001
α 0.836 0.002 0.106 0.648 0.829 1.064 3097 1.002
k 1.553 0.004 0.196 1.205 1.544 1.969 2714 1.001
η 0.674 0.003 0.191 0.353 0.653 1.105 3023 1.001

GLL–PO β 0.565 0.006 0.353 −0.135 0.562 1.268 3617 1.001
α 1.414 0.003 0.156 1.136 1.405 1.741 3257 1.000
k 0.804 0.002 0.115 0.600 0.796 1.054 2951 1.001
η 0.806 0.004 0.214 0.429 0.792 1.262 2918 1.000

GLL–PH β 0.106 0.004 0.224 −0.330 0.107 0.540 3216 1.000
α 1.341 0.002 0.146 1.077 1.332 1.646 3588 1.001
k 0.876 0.002 0.122 0.662 0.869 1.134 3068 1.001
η 0.837 0.004 0.221 0.452 0.820 1.315 3239 1.001

GLL–AFT β 0.418 0.005 0.269 −0.116 0.415 0.949 3396 1.000
α 1.435 0.003 0.177 1.124 1.423 1.804 3373 1.000
k 0.809 0.002 0.114 0.609 0.801 1.060 2963 1.000
η 0.850 0.004 0.210 0.479 0.836 1.311 2728 1.000

Table 6. Results for the posterior properties of the submodels of the GLL–AH model including
LL–AH, W–AH, and BXII–AH models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Ne f f R̂

LL–AH β 0.764 0.007 0.385 −0.073 0.800 1.421 3228 1.001
α 1.636 0.004 0.197 1.261 1.629 2.039 2930 1.000
k 0.879 0.002 0.107 0.688 0.873 1.109 3681 1.001

W–AH β −0.007 0.014 0.949 −1.850 −0.019 1.860 4377 1.000
α 0.984 0.001 0.085 0.821 0.982 1.152 3521 1.000
k 0.559 0.001 0.068 0.437 0.554 0.702 3875 1.001

BXII–AH β 0.678 0.007 0.378 −0.135 0.697 1.345 3291 1.000
α 1.627 0.004 0.209 1.247 1.620 2.062 3099 1.000
k 0.949 0.002 0.115 0.740 0.943 1.186 3932 1.000
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7.4.2. Visual Summary

Figures 3–9 provide the trace and autocorrelation (AC) plots for the baseline distribu-
tion parameters and regression coefficients of the proposed AH model and its submodels,
plus other competing survival regression models, including the GLL–PH, GLL–PO, and
GLL–AFT models, indicating convergence of the chains.

Figure 3. The GLL–AH model posterior parameters trace plots of the gastric cancer data.

Figure 4. The GLL–PH model posterior parameters trace plots of the gastric cancer data.

Figure 5. The GLL–PO model posterior parameters trace plots of the gastric cancer data.
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Figure 6. The GLL–AFT model posterior parameters trace plots of the gastric cancer data.

Figure 7. The LL–AH model posterior parameters trace plots of the gastric cancer data.

Figure 8. The W–AH model posterior parameters trace plots of the gastric cancer data.

Figure 9. The BXII–AH model posterior parameters trace plots of the gastric cancer data.
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7.4.3. Posterior Predictive Checks

If a fitted Bayesian parametric hazard-based regression model predicts future obser-
vations that are consistent with the current data, it is considered sufficient or performing
well. By using the Bayesplot R package, posterior predictive check (PPC) plots are used to
visually evaluate model fit. It can be seen from PPC in Figure 10, that the GLL–AH model
fits the data quite well.

Figure 10. The empirical CDF, the dotted line and the CDF of the fitted model, the smooth curve,
show that the fitted GLL–AH model predicts the future observations that are consistent with the
current data.

7.4.4. McMC Convergence Diagnostics

We applied both numerical and visual methods to evaluate the convergence of the
McMC algorithm for the proposed models and their special cases. The McMC algorithm
HMC-NUTS has converged to the joint posterior distribution, as shown by the summary
results in the above table, because the potential scale reduction factor hatR is 1, the effective
sample size (ne f f ) is greater than 400, and the MC error (SE) is less than 0.05 of the posterior
standard deviations for all parameters.

Visually assessing convergence is often done by using AC and trace graphs [23].
Figures 3–9 show a stationary pattern fluctuating within a band, demonstrating the con-
vergence of the McMC algorithm. Figure 11, showing the AC plot, demonstrates how the
AC rapidly decreases to zero as the period of lag increases, indicating good mixing and
the convergence of the algorithm to the desired posterior distribution. Finally, Figure 12
indicates the pdf plots for the GLL-AH model posterior parameters.

Figure 11. The GLL–AH model posterior parameters AC plots of the gastric cancer data.
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Figure 12. The GLL–AH model posterior parameters PDF plots of the gastric cancer data.

7.4.5. Bayesian Model Selection

We implemented two information criteria, the Watanabe–Akaike information criterion
(WAIC), proposed by [46], for the Bayesian model comparison, and the leave-one-out
information criterion (LOOIC) proposed by Vehtari et al. [47]. A model may be said to
be best suited if it has the lowest WAIC and LOOIC values for both information criteria.
In addition to Stan fitting, posterior predictive check (PPC) and determining WAIC and
LOOIC are performed by using the R package loo [47]. Table 7 below shows that, when
compared to its rival models, the GLL–AH model is the most effective. In addition, Table 8
demonstrates that, when compared to its sub-models, again the GLL–AH model is the
superior one.

Table 7. Bayesian model comparison for the GLL–AH, GLL–PO, GLL–AFT, and GLL–PH models.

Model WAIC LOOIC

GLL–AH 243.20 243.20

GLL–PO 251.40 251.42

GLL–AFT 251.80 251.90

GLL–PH 254.80 254.82

Table 8. Bayesian model comparison for the GLL–AH and its special cases including LL–AH, W–AH,
and BXII–AH models

Model WAIC LOOIC

GLL–AH 243.20 243.20

LL–AH 249.30 249.40

W–AH 255.01 255.00

BXII–AH 247.05 247.08

Figure 13 indicates the Kaplan–Meier estimate and the sf estimate for the proposed
GLL–AH model parameters.

Figures 14 and 15 demonstrate the Kaplan–Meier estimate and the survival estimate
curves for the proposed regression models with GLL baseline distribution and the AH
model with various baseline hazards. In Figure 14, the GLL–AH model survival curve is
closer to the KM survival curve compared to all other survival regression models. The
same thing occurred in Figure 15.
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Figure 13. Kaplan–Meier and fitted survival curve for the GLL–AH model of the gastric
cancer dataset.

Figure 14. Kaplan–Meier and estimated survival plots for the competitive regression models with
the GLL baseline distribution of the gastric cancer dataset.

The main advantage of this study is that, unlike other parametric survival regression
models like the PH, PO, and AFT models, the parametric AH model may accommodate
survival datasets with crossover survival curves. The proposed parametric model, on
the other hand, is inappropriate when the baseline distribution is exponential, which is
one of the study’s limitations. Another limitation is that when the baseline distribution is
the Weibull distribution, the proposed model performs identically to existing parametric
hazard-based regression models, such as PH and AFT models.

Extension of the AH model’s structure to incorporate survival datasets with or with-
out crossover survival curves is one possible future endeavor. Additionally, this frame-
work may include other parametric survival regression models, such as the additive
hazards model.
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Figure 15. Kaplan–Meier and estimated survival plots for the competitive AH models of the gastric
cancer dataset.

8. Conclusions

This article proposes a fully parametric AH model for dealing with censored lifetime
data with crossover survival curves as an extension of the semi-parametric AH model [14].
The primary distinction between this modification and others is that we used a modified
baseline distribution that can capture different hazard rate shapes to provide a more flexible
depiction of the baseline hazard. By adopting a flexible parametric baseline distribution
like the GLL distribution, we showed that it is possible to carry out both Bayesian and
classical likelihood inference using the rstan package of the R programming language.

This also defines the paper’s key contribution, as no other study combining these
two characteristics (AH model and a modified baseline distribution) can be found in the
time-to-event analysis field. Furthermore, employing both Bayesian and classical inference
via MLE will address the semi-parametric AH model’s limited use due to a lack of efficient
and trustworthy estimation methods. Additionally, using the GLL distribution as a baseline
hazard offers several benefits as compared to other parametric baseline distributions that
may accept different hazard rate shapes, such as the gamma, GG, Weibull, EW, PGW, LL,
Bur-XII, and LN distributions.

Following the simulation study, the paper gave a real-world demonstration involving
a well-known dataset with crossover survival curves and was concerned with a clinical
study for patients with gastric cancer. In summary, the GLL–AH model outperforms the
other competing parametric AH models with various baseline hazards and other survival
regression models with the same baseline hazard. Finally, we developed an R package,
“AHSurv”, to fit the proposed model in this study as an addendum to this paper; the source
code is accessible at [48].
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