# On the Convergence of the Damped Additive Schwarz Methods and the Subdomain Coloring

## Abstract

**:**

## 1. Introduction

## 2. General Convergence Result

**Assumption**

**1.**

**Assumption**

**2.**

**Algorithm**

**1.**

**Algorithm**

**2.**

**Remark**

**1.**

**Theorem**

**1.**

- (i)
- if $p=q=2$ we haven

- (ii)
- if $p>q$ we have

**Proof.**

**Remark**

**2.**

**Theorem**

**2.**

**Proof.**

**Remark**

**3.**

## 3. Damped Additive Schwarz Methods in Finite Element Spaces

**Remark**

**4.**

## 4. Numerical Results

## Funding

## Conflicts of Interest

## References

- Dolean, V.; Jolivet, P.; Nataf, F. An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation; SIAM: Philadelphia, PA, USA, 2015. [Google Scholar]
- Kornhuber, R. Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems; Teubner-Verlag: Stuttgart, Germany, 1997. [Google Scholar]
- Quarteroni, A.; Valli, A. Domain Decomposition Methods for Partial Differential Equations; Oxford Science Publications: Oxford, UK, 1999. [Google Scholar]
- Smith, B.F.; Bjørstad, P.E.; Gropp, W. Domain Decomposition: Parallel Multilevel Methods for Elliptic Differential Equations; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Toselli, A.; Widlund, O. Domain Decomposition Methods—Algorithms and Theory; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 34. [Google Scholar]
- Glowinski, R.; Golub, G.H.; Meurant, G.A.; Périeux, J. (Eds.) First International Symposium on Domain Decomposition Methods; SIAM: Philadelphia, PA, USA, 1988. [Google Scholar]
- Brenner, S.C. An additive analysis of multiplicative Schwarz methods. Numer. Math.
**2013**, 123, 1–19. [Google Scholar] [CrossRef] - Griebel, M.; Oswald, P. On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math.
**1995**, 70, 163–180. [Google Scholar] [CrossRef] - Dryja, M.; Widlund, O.B. Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems; Division of Computer Science, Courant Institute of Mathematical Sciences, New York University: New York, NY, USA, 1989. [Google Scholar]
- Frommer, A.; Szyld, D.B. Weighted max norms, splittings, and overlapping additive Schwarz iterations. Numer. Math.
**1999**, 83, 259–278. [Google Scholar] [CrossRef] [Green Version] - Zeng, J.-P.; Li, D.-H.; Fukushima, M. Weighted max-norm estimate of additive Schwarz iteration scheme for solving linear complementarity problems. J. Comput. Appl. Math.
**2001**, 131, 1–14. [Google Scholar] [CrossRef] [Green Version] - Badea, L. An additive Schwarz method for the constrained minimization of functionals in reflexive Banach spaces. In Domain Decomposition Methods in Science and Engineering XVII; Langer, U., Zulehner, W., Discacciati, M., Keyes, D.E., Widlund, O.B., Eds.; LNCSE 60; Springer: Berlin/Heidelberg, Germany, 2008; pp. 427–434. [Google Scholar]
- Tai, X.-C.; Xu, J. Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comput.
**2001**, 71, 105–124. [Google Scholar] [CrossRef] - Badea, L. Convergence rate of some hybrid multigrid methods for variational inequalities. J. Numer. Math.
**2015**, 23, 195–210. [Google Scholar] [CrossRef] - Cai, X.-C.; Dryja, M. Domain decomposition methods for monotone nonlinear elliptic problems. In Domain Decomposition Methods in Scientific and Engineering Computing; Keyes, D.E., Xu, J., Eds.; Contemporary Mathematics: Providence, RI, USA, 1994; Volume 180, pp. 21–29. [Google Scholar]
- Dryja, M.; Hackbusch, W. On the nonlinear domain decomposition methods. BIT
**1997**, 37, 296–311. [Google Scholar] [CrossRef] - Badea, L. Schwarz methods for inequalities with contraction operators. J. Comput. Appl. Math.
**2008**, 215, 196–219. [Google Scholar] [CrossRef] [Green Version] - Cancès, E.; Maday, Y.; Stamm, B. Domain decomposition for implicit solvation models. J. Chem. Phys.
**2013**, 139, 054111. [Google Scholar] [CrossRef] [PubMed] - Lipparini, F.; Scalmani, G.; Lagardère, L.; Stamm, B.; Cancès, E.; Maday, Y.; Piquemal, J.-P.; Frisch, M.J.; Mennucci, B. Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddcosmo linear scaling strategy. J. Chem. Phys.
**2014**, 141, 184108. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lipparini, F.; Stamm, B.; Cances, E.; Maday, Y.; Mennucci, B. Fast domain decomposition algorithm for continuum solvation models: Energy and first derivatives. J. Chem. Theory Comput.
**2013**, 9, 3637–3648. [Google Scholar] [CrossRef] [PubMed] - Ciaramella, G.; Gander, M.J. Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part I. SIAM J. Numer. Anal.
**2017**, 55, 1330–1356. [Google Scholar] [CrossRef] - Ciaramella, G.; Gander, M.J. Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part II. SIAM J. Numer. Anal.
**2018**, 56, 1498–1524. [Google Scholar] [CrossRef] - Ciaramella, G.; Gander, M.J. Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part III. Electron. Trans. Numer. Anal.
**2018**, 49, 201–243. [Google Scholar] [CrossRef] - Chaouqui, F.; Ciaramella, G.; Gander, M.J.; Vanzan, T. On the Scalability of Classical One-Level Domain-Decomposition Methods. Vietnam. J. Math.
**2018**, 46, 1053–1088. [Google Scholar] [CrossRef] - Badea, L. Convergence rate of a multiplicative Schwarz method for strongly nonlinear variational inequalities. In Analysis and Optimization of Differential Systems; Barbu, V., Lasiecka, I., Tiba, D., Varsan, C., Eds.; Springer: Boston, MA, USA, 2003; pp. 31–42. [Google Scholar]
- Badea, L. Convergence rate of a Schwarz multilevel method for the constrained minimization of non-quadratic functionals. SIAM J. Numer. Anal.
**2006**, 44, 449–477. [Google Scholar] [CrossRef] - Ekeland, I.; Temam, R. Analyse Convexe et Problèmes Variationnels; Dunod: Paris, France, 1974. [Google Scholar]
- Glowinski, R.; Lions, J.-L.; Trémolières, R. Numerical Analysis of Variational Inequalities; Studies in Mathematics and Its, Applications; Lions, J.-L., Papanicolau, G., Rockafellar, R.T., Eds.; Elsevier: Amsterdam, The Netherlands, 1981; Volume 8. [Google Scholar]

**Figure 3.**Number of iterations depending on the overlap parameter: damping parameter associated with the color (

**left**) and constant damping parameter (

**right**).

**Figure 4.**Sections in the direction of a coordinate axis passing through the center of the functions of a unity partition: $\delta =0.01$ (

**left**) and $\delta =0.14$ (

**right**).

**Figure 5.**Sections in the direction of a coordinate axis passing through the center of the functions of a unity partition: $\delta =0.15$ (

**left**) and $\delta =0.18$ (

**right**).

**Figure 6.**Number of iterations depending on the number of subdomains: damping parameter associated with the color (

**left**) and constant damping parameter (

**right**).

**Figure 7.**Sections in the direction of a coordinate axis passing through the center of the functions of a unity partition: ${2}^{2}$ subdomains (

**left**) and ${24}^{2}$ subdomains (

**right**).

**Figure 8.**Sections in the direction of a coordinate axis passing through the center of the functions of a unity partition: ${25}^{2}$ subdomains (

**left**) and ${48}^{2}$ subdomains (

**right**).

**Table 1.**Number of iterations depending on the various damping parameters associated with the colors.

${\mathit{\varrho}}_{1}$ | ${\mathit{\varrho}}_{2}$ | ${\mathit{\varrho}}_{3}$ | ${\mathit{\varrho}}_{4}$ | Number of Iterations |
---|---|---|---|---|

0.10 | 0.10 | 0.35 | 0.45 | 451 |

0.10 | 0.15 | 0.25 | 0.50 | 406 |

0.10 | 0.15 | 0.40 | 0.35 | 396 |

0.10 | 0.20 | 0.30 | 0.40 | 377 |

0.10 | 0.25 | 0.20 | 0.45 | 383 |

0.10 | 0.25 | 0.35 | 0.30 | 365 |

0.10 | 0.30 | 0.25 | 0.35 | 366 |

0.20 | 0.20 | 0.55 | 0.35 | 292 |

0.20 | 0.30 | 0.20 | 0.30 | 288 |

0.25 | 0.25 | 0.25 | 0.25 | 275 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Badea, L.
On the Convergence of the Damped Additive Schwarz Methods and the Subdomain Coloring. *Math. Comput. Appl.* **2022**, *27*, 59.
https://doi.org/10.3390/mca27040059

**AMA Style**

Badea L.
On the Convergence of the Damped Additive Schwarz Methods and the Subdomain Coloring. *Mathematical and Computational Applications*. 2022; 27(4):59.
https://doi.org/10.3390/mca27040059

**Chicago/Turabian Style**

Badea, Lori.
2022. "On the Convergence of the Damped Additive Schwarz Methods and the Subdomain Coloring" *Mathematical and Computational Applications* 27, no. 4: 59.
https://doi.org/10.3390/mca27040059