# Modified Representations for the Close Evaluation Problem

## Abstract

**:**

## 1. Introduction

## 2. Motivation for Modified Representations

## 3. Modified Representations

#### 3.1. Modified Representation for the Laplace Double-Layer Potential

**Proposition**

**1.**

#### 3.2. Modified Representation for the Laplace Single-Layer Potential

**Proposition**

**2.**

- The linear function $\mathtt{v}\left(y\right)={n}_{{x}^{*}}\xb7y$;
- The function $\mathtt{v}\left(y\right)={2}^{d-1}\pi G(y,{x}^{*}+{n}_{{x}^{*}})$ based on Green’s function;
- The quadratic product function $\mathtt{v}\left(y\right)=\frac{({y}_{1}-{x}_{0,1})({y}_{2}-{x}_{0,2})}{{n}_{{x}^{*},1}({x}_{2}^{*}-{x}_{0,2})+{n}_{{x}^{*},2}({x}_{1}^{*}-{x}_{0,1})}$, ${x}_{0}\in D$;
- The quadratic difference function $\mathtt{v}\left(y\right)=\frac{1}{2}\frac{{({y}_{1}-{x}_{0,1})}^{2}-{({y}_{2}-{x}_{0,2})}^{2}}{{n}_{{x}^{*},1}({x}_{1}^{*}-{x}_{0,1})-{n}_{{x}^{*},2}({x}_{2}^{*}-{x}_{0,2})}$, ${x}_{0}\in D.$

#### 3.3. Modified Representation for the Helmholtz Double- and Single-Layer Potentials

**Proposition**

**3.**

## 4. Numerical Examples

#### 4.1. Exterior Neumann Laplace Problem

#### 4.1.1. Example 1: Exterior Laplace in Two Dimensions

**V0:**standard representation (7);**V1:**modified representation (17) with the linear function ${\mathtt{v}}_{1}\left(y\right)={n}_{{x}^{*}}\xb7y;$**V2:**modified representation (17) with the Green’s function ${\mathtt{v}}_{2}\left(y\right)=2\pi G(y,{x}^{*}+{n}^{*});$**V3:**modified representation (17) with the quadratic function ${\mathtt{v}}_{3}\left(y\right)=\frac{1}{2}\frac{{y}_{1}^{2}-{y}_{2}^{2}}{{n}_{{x}^{*},1}{x}_{1}^{*}-{n}_{{x}^{*},2}{x}_{2}^{*}};$**V4:**modified representation (17) with the quadratic function$${\mathtt{v}}_{4}\left(y\right)=\frac{({y}_{1}-5)({y}_{2}-5)}{{n}_{{x}^{*},1}({x}_{2}^{*}-5)+{n}_{{x}^{*},2}({x}_{1}^{*}-5)}.$$

#### 4.1.2. Example 2: Exterior Laplace in Three Dimensions

**V0:**standard representation (7);**V1:**modified representation (17) with the linear function ${\mathtt{v}}_{1}\left(y\right)={n}_{{x}^{*}}\xb7y$;**V2:**modified representation (17) with the Green’s function ${\mathtt{v}}_{2}\left(y\right)=4\pi G(y,{x}^{*}+{n}^{*});$**V3:**modified representation (17) with the quadratic function ${\mathtt{v}}_{3}\left(y\right)=\frac{1}{2}\frac{{y}_{1}^{2}-{y}_{2}^{2}}{{n}_{{x}^{*},1}{x}_{1}^{*}-{n}_{{x}^{*},2}{x}_{2}^{*}};$**V4:**modified representation (17) with the quadratic product function$${\mathtt{v}}_{4}\left(y\right)=\frac{({y}_{1}-5)({y}_{2}-5)}{{n}_{{x}^{*},1}({x}_{2}^{*}-5)+{n}_{{x}^{*},2}({x}_{1}^{*}-5)}.$$

#### 4.2. Scattering Problem

#### 4.2.1. Example 3: Scattering in Two Dimensions

**V0:**standard representation (19);

#### 4.2.2. Example 4: Scattering in Three Dimensions

#### 4.2.3. High Frequency Behavior

## 5. Modified Boundary Integral Equations

**Proposition**

**4.**

## 6. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Kress Product Quadrature

## Appendix B. Galerkin Approximation

## Appendix C. Proof of Modified Representations

#### Appendix C.1. Modified Double-Layer Potential (14)

#### Appendix C.2. Proof of Proposition 2

#### Appendix C.3. Proof of Propositions 3, 4

## References

- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M.H. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics
**2014**, 8, 835–840. [Google Scholar] [CrossRef][Green Version] - Barnett, A.H.; Wu, B.; Veerapaneni, S. Spectrally accurate quadratures for evaluation of layer potentials close to the boundary for the 2D Stokes and Laplace equations. SIAM J. Sci. Comput.
**2015**, 37, B519–B542. [Google Scholar] [CrossRef][Green Version] - Keaveny, E.E.; Shelley, M.J. Applying a second-kind boundary integral equation for surface tractions in Stokes flow. J. Comput. Phys.
**2011**, 230, 2141–2159. [Google Scholar] [CrossRef] - Marple, G.R.; Barnett, A.; Gillman, A.; Veerapaneni, S. A fast algorithm for simulating multiphase flows through periodic geometries of arbitrary shape. SIAM J. Sci. Comput.
**2016**, 38, B740–B772. [Google Scholar] [CrossRef][Green Version] - Mayer, K.M.; Lee, S.; Liao, H.; Rostro, B.C.; Fuentes, A.; Scully, P.T.; Nehl, C.L.; Hafner, J.H. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano
**2008**, 2, 687–692. [Google Scholar] [CrossRef] - Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics
**2011**, 5, 83–90. [Google Scholar] [CrossRef] - Sannomiya, T.; Hafner, C.; Voros, J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett.
**2008**, 8, 3450–3455. [Google Scholar] [CrossRef] - Smith, D.J. A boundary element regularized Stokeslet method applied to cilia-and flagella-driven flow. Proc. R. Soc. Lond. A
**2009**, 465, 3605–3626. [Google Scholar] [CrossRef][Green Version] - Barnett, A.H. Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput.
**2014**, 36, A427–A451. [Google Scholar] [CrossRef][Green Version] - Schwab, C.; Wendland, W. On the extraction technique in boundary integral equations. Math. Comput.
**1999**, 68, 91–122. [Google Scholar] [CrossRef][Green Version] - Beale, J.T.; Lai, M.C. A method for computing nearly singular integrals. SIAM J. Numer. Anal.
**2001**, 38, 1902–1925. [Google Scholar] [CrossRef][Green Version] - Beale, J.T.; Ying, W.; Wilson, J.R. A simple method for computing singular or nearly singular integrals on closed surfaces. Commun. Comput. Phys.
**2016**, 20, 733–753. [Google Scholar] [CrossRef][Green Version] - Helsing, J.; Ojala, R. On the evaluation of layer potentials close to their sources. J. Comput. Phys.
**2008**, 227, 2899–2921. [Google Scholar] [CrossRef][Green Version] - Af Klinteberg, L.; Tornberg, A.-K. A fast integral equation method for solid particles in viscous flow using quadrature by expansion. J. Comput. Phys.
**2016**, 326, 420–445. [Google Scholar] [CrossRef][Green Version] - Af Klinteberg, L.; Tornberg, A.-K. Error estimation for quadrature by expansion in layer potential evaluation. Adv. Comput. Math.
**2017**, 43, 195–234. [Google Scholar] [CrossRef][Green Version] - Epstein, C.L.; Greengard, L.; Klöckner, A.K. On the convergence of local expansions of layer potentials. SIAM J. Numer. Anal.
**2013**, 51, 2660–2679. [Google Scholar] [CrossRef][Green Version] - Klöckner, A.; Barnett, A.; Greengard, L.; O’Neil, M. Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys.
**2013**, 252, 332–349. [Google Scholar] [CrossRef][Green Version] - Rachh, M.; Klöckner, A.; O’Neil, M. Fast Algorithms for Quadrature by Expansion I: Globally Valid Expansions. J. Comput. Phys.
**2017**, 345, 706–731. [Google Scholar] [CrossRef][Green Version] - Wala, M.; Klöckner, A. A Fast Algorithm for Quadrature by Expansion in Three Dimensions. J. Comput. Phys.
**2019**, 388, 655–689. [Google Scholar] [CrossRef][Green Version] - Greengard, L.; O’Neil, M.; Rachh, M.; Vico, F. Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures. J. Comput. Phys. X
**2021**, 10, 100092. [Google Scholar] - Pérez-Arancibia, C. A plane-wave singularity subtraction technique for the classical Dirichlet and Neumann combined field integral equations. Appl. Numer. Math.
**2018**, 123, 221–240. [Google Scholar] [CrossRef] - Pérez-Arancibia, C.; Faria, L.; Turc, C. Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D. J. Comput. Phys.
**2019**, 376, 411–434. [Google Scholar] [CrossRef][Green Version] - Pérez-Arancibia, C.; Turc, C.; Faria, L. Planewave density interpolation methods for 3D Helmholtz boundary integral equations. SIAM J. Sci. Comput.
**2019**, 41, A2088–A2116. [Google Scholar] [CrossRef][Green Version] - Carvalho, C.; Khatri, S.; Kim, A.D. Asymptotic analysis for close evaluation of layer potentials. J. Comput. Phys.
**2018**, 355, 327–341. [Google Scholar] [CrossRef][Green Version] - Carvalho, C.; Khatri, S.; Kim, A.D. Asymptotic approximation for the close evaluation of double-layer potentials. SIAM J. Sci. Comput.
**2020**, 42, A504–A533. [Google Scholar] [CrossRef][Green Version] - Khatri, S.; Kim, A.D.; Cortes, R.; Carvalho, C. Close evaluation of layer potentials in three dimensions. J. Comput. Phys.
**2020**, 423, 109798. [Google Scholar] [CrossRef] - Hwang, W.S. A regularized boundary integral method in potential theory. Comput. Methods Appl. Mech. Eng.
**2013**, 259, 9. [Google Scholar] [CrossRef] - Liu, Y.J.; Rudolphi, T.J. New identities for fundamental solutions and their applications to non-singular boundary element formulations. Comput. Mech.
**1999**, 24, 286–292. [Google Scholar] [CrossRef] - Klaseboer, E.; Sun, Q.; Chan, D.Y. Non-singular boundary integral methods for fluid mechanics applications. J. Fluid Mech.
**2012**, 696, 78. [Google Scholar] [CrossRef] - Sun, Q.; Klaseboer, E.; Khoo, B.C.; Chan, D.Y. A robust and non-singular formulation of the boundary integral method for the potential problem. Eng. Anal. Bound. Elem.
**2014**, 1, 117–123. [Google Scholar] [CrossRef] - Sun, Q.; Klaseboer, E.; Khoo, B.-C.; Chan, D.Y. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics. R. Soc. Open Sci.
**2015**, 2, 140520. [Google Scholar] [CrossRef] [PubMed] - Faria, L.M.; Pérez-Arancibia, C.; Bonnet, M. General-purpose kernel regularization of boundary integral equations via density interpolation. Comput. Methods Appl. Mech. Eng.
**2021**, 378, 113703. [Google Scholar] [CrossRef] - Kress, R. Linear Integral Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Colton, D.; Kress, R. Integral Equation Methods in Scattering Theory; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Guenther, R.B.; Lee, J.W. Partial Differential Equations of Mathematical Physics and Integral Equations; Dover Publications: New York, NY, USA, 1996. [Google Scholar]
- Atkinson, K.E. The Numerical Solution of Integral Equations of the Second Kind; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Bremer, J.; Gimbutas, Z.; Rokhlin, V. A nonlinear optimization procedure for generalized gaussian quadratures. SIAM J. Sci. Comput.
**2010**, 32, 1761–1788. [Google Scholar] [CrossRef][Green Version] - Bruno, O.P.; Kunyansky, L.A. A fast, high-order algorithm for the solution of surface scattering problems: Basic implementation, tests, and applications. J. Comput. Phys.
**2001**, 169, 80–110. [Google Scholar] [CrossRef][Green Version] - Ganesh, M.; Graham, I. A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys.
**2004**, 198, 211–242. [Google Scholar] [CrossRef] - Kress, R. Boundary integral equations in time-harmonic acoustic scattering. Math. Comput. Model.
**1991**, 15, 229–243. [Google Scholar] [CrossRef] - Carvalho, C. Subtraction-Techniques Codes. Available online: https://doi.org/10.5281/zenodo.5523373 (accessed on 25 September 2021).
- Atkinson, K.E. Numerical integration on the sphere. ANZIAM J.
**1982**, 23, 332–347. [Google Scholar] [CrossRef][Green Version] - Atkinson, K.E. The numerical solution Laplace’s equation in three dimensions. SIAM J. Numer. Anal.
**1982**, 19, 263–274. [Google Scholar] [CrossRef] - Atkinson, K.E. Algorithm 629: An integral equation program for Laplace’s equation in three dimensions. ACM Trans. Math. Softw.
**1985**, 11, 85–96. [Google Scholar] [CrossRef] - Atkinson, K.E. A survey of boundary integral equation methods for the numerical solution of Laplace’s equation in three dimensions. In Numerical Solution of Integral Equations; Springer: Boston, MA, USA, 1990; pp. 1–34. [Google Scholar]
- Ammari, H.; Millien, P.; Ruiz, M.; Zhang, H. Mathematical analysis of plasmonic nanoparticles: The scalar case. Arch. Ration. Mech. Anal.
**2017**, 2, 597–658. [Google Scholar] [CrossRef][Green Version] - Helsing, J.; Karlsson, A. An extended charge-current formulation of the electromagnetic transmission problem. SIAM J. Appl. Math.
**2020**, 80, 951–976. [Google Scholar] [CrossRef]

**Figure 1.**Laplace 2D single-layer. Plots of ${log}_{10}$ of the error for the evaluation of the solution of (2) out of the kite domain defined by the boundary $y\left(t\right)=(cost+0.65cos(2t)-0.65,1.5sint)$, $t\in [0,2\pi ]$, for the Neumann data, $g={\partial}_{n}{u}_{\mathrm{exact}}$ with ${x}_{0}=(0.1,0.4)$, for representations V0, V1, V2, V3, V4 computed using PTR with $N=128$. Computations are made on a boddy-fitted grid with $N\times 200$ grid points.

**Figure 3.**Laplace 2D single-layer. Log-log plots of the errors with respect to N made in computing the solution at some distance ℓ along the normal from point A plotted as black ×’s in Figure 1.

**Figure 4.**Laplace 3D single-layer. Log-log plots of the errors with respect to ℓ made in computing the solution of (2) for the Neumann data, $g\left({x}^{*}\right)=-\frac{{n}_{{x}^{*}}\xb7({x}^{*}-{x}_{0})}{|{x}^{*}-{x}_{0}{|}^{3}}$ with ${x}_{0}=(0,0,0)$, outside of a sphere a radius 2, along the normal of point A = $(-0.0065,-0.0327,1.9997)$ (

**left**), of point B = $(-0.3526,-1.7728,0.8561)$ (

**right**).

**Figure 5.**Laplace 3D single-layer. Log-log plots of the errors with respect to N made in computing the solution (as described in Figure 4) at some distance ℓ along the normal from point B = $(-0.3526,-1.7728,0.8561)$.

**Figure 6.**Helmholtz 2D. Plots of ${log}_{10}$ of the error for the evaluation of the solution of (18) out of the star domain defined by the boundary $y\left(t\right)=(1+0.3cos5t)*(cost,sint)$, $t\in [0,2\pi ]$, for the Dirichlet data, $f\left({x}^{*}\right)=\frac{i}{4}{H}_{0}^{\left(1\right)}\left(15\right|{x}^{*}-{x}_{0}\left|\right)$ with ${x}_{0}=(0.2,0.8)$, for representations V0, V1, computed using PTR with $N=256$.

**Figure 7.**Helmholtz 2D. Log-log plots of the errors made in computing the solution along the normal of the three points A, B, C, plotted as black ×’s in Figure 6.

**Figure 8.**Helmholtz 2D. Log-log plots of the errors with respect to N made in computing the solution at some distance ℓ along the normal from point A plotted as black ×’s in Figure 6.

**Figure 9.**Helmholtz 3D. Log-Log of the error along the normal for the evaluation of the solution of (18) out of the ellipsoid parameterized by $y(s,t)=(2cos(t)sin(s),sin(t)sin(s),2cos(s\left)\right)$, $(s,t)\in [0,\pi ]\times [-\pi ,\pi ]$, for the Dirichlet data $f\left({x}^{*}\right)=\frac{1}{4}\frac{{e}^{i5|z-{x}_{0}|}}{|x-{x}_{0}|}$ with ${x}_{0}=(0.1,0.2,0.3)$: at point A = $(-0.7664,0.0607,1.8433)$ (top row), at point B = $(-0.0098,-0.0096,1.9999)$ (bottom row), for various N.

**Figure 10.**Helmholtz 3D. Log-plot of the maximum error for computing the solution as described in Figure 9 with $\partial D$ being the ellipsoid parameterized by $y(s,t)=(2cos(t)sin(s),sin(t)sin(s),2cos(s\left)\right)$, $(s,t)\in [0,\pi ]\times [-\pi ,\pi ]$, at some distance ℓ along the normal from point A= $(-0.7664,0.0607,1.8433)$.

**Figure 11.**Helmholtz 2D. Log-Log of the maximum error in computing the solution of Problem (18) as described in Section 4.2.1, with respect to the wavenumber k, for various number of quadrature points N.

**Figure 12.**Helmholtz 3D. Log-Log of the maximum error in computing the solution of Problem (18) as described in Section 4.2.2, with respect to the wavenumber k, for various number of quadrature points N.

**Figure 13.**Helmholtz 2D. Log-Log plot of the error along the normal for the solution of (18) out of the star domain defined by the boundary $y\left(t\right)=(1.55+0.4cos5t)*(cost,sint)$, $t\in [0,2\pi ]$, for the Dirichlet data, $f\left({x}^{*}\right)=\frac{i}{4}{H}_{0}^{\left(1\right)}\left(15\right|{x}^{*}-{x}_{0}\left|\right)$ with ${x}_{0}=(0.2,0.8)$, at the three points A, B, C plotted as black ×’s in Figure 6.

**Figure 14.**Helmholtz 3D. Log-Log plot of the error for the problem described in Figure 9 using $N=32$, and for the four representations (standard or modified, off and on boundary).

**Table 1.**Laplace 2D single-layer. CPU times (in seconds) for various number of quadrature points and representations. Times account for computing the solution at $N\times 12$ grid points ($\ell ={10}^{-k}$, $k=\u301a0,11\u301b$) on a body-fitted grid.

Method | V0 | V1 | V2 | V3 | V4 |
---|---|---|---|---|---|

$N=128$ | 0.014 | 0.044 | 0.055 | 0.045 | 0.05 |

$N=256$ | 0.056 | 0.07 | 0.112 | 0.08 | 0.081 |

$N=512$ | 0.12 | 0.192 | 0.263 | 0.2 | 0.19 |

**Table 2.**Laplace 3D single-layer. CPU times (in seconds) for various number of quadrature points and representations for computing the solution (as described in Figure 4) from points A and B, for $\ell ={10}^{-k}$, $k=\u301a0,11\u301b$.

Method | V0 | V1 | V2 | V3 | V4 |
---|---|---|---|---|---|

N = 8 | 0.028 | 0.029 | 0.032 | 0.031 | 0.046 |

N = 16 | 0.143 | 0.146 | 0.148 | 0.150 | 0.142 |

N = 24 | 0.352 | 0.344 | 0.346 | 0.35 | 0.356 |

**Table 3.**Helmholtz 2D. CPU times (in seconds) for various number of quadrature points and representations. Times account for computing the solution for $N\times 12$ grid points (for $\ell ={10}^{-k}$, $k=\u301a0,11\u301b$) on a body-fitted grid.

Method | $\mathit{N}=128$ | $\mathit{N}=256$ | $\mathit{N}=512$ |
---|---|---|---|

V0 | 0.18 | 0.27 | 0.71 |

V1 | 0.21 | 0.33 | 0.89 |

**Table 4.**Helmholtz 3D. CPU times (in seconds) for various number of quadrature points and representations. Times account for computing the solution from points A and B, for $\ell ={10}^{-k}$, $k=\u301a0,11\u301b$.

Method | $\mathit{N}=8$ | $\mathit{N}=16$ | $\mathit{N}=20$ |
---|---|---|---|

V0 | 0.027 | 0.15 | 0.313 |

V1 | 0.03 | 0.15 | 0.314 |

**Table 5.**Helmholtz 2D. CPU times (in seconds) for various number of quadrature points to compute the solution of the boundary integral equation.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Carvalho, C.
Modified Representations for the Close Evaluation Problem. *Math. Comput. Appl.* **2021**, *26*, 69.
https://doi.org/10.3390/mca26040069

**AMA Style**

Carvalho C.
Modified Representations for the Close Evaluation Problem. *Mathematical and Computational Applications*. 2021; 26(4):69.
https://doi.org/10.3390/mca26040069

**Chicago/Turabian Style**

Carvalho, Camille.
2021. "Modified Representations for the Close Evaluation Problem" *Mathematical and Computational Applications* 26, no. 4: 69.
https://doi.org/10.3390/mca26040069