Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples
Abstract
:1. Introduction
2. Experimental Section
2.1. Treatment of Pencil Leads
2.2. Examination of the Maximum Binding Capacity of Model Analytes on Pencil Leads
2.3. SPME-CFI-MS Setup
2.4. Analysis of Small and Large Biomolecules
2.5. Enrichment of AFB1 on the Pencil Lead for Online Elution and CFI-MS Analysis
2.6. Examination of Selectivity
2.7. Detection of AFB1 from Peanut Extracts
3. Results and Discussion
3.1. Examination of the Binding Capacity of AFB1 on the SPME Fiber
3.2. Examination of the Optimal Extraction and Recovery Parameters
3.3. Analysis of Model Analytes Using Our Ionization Setup
3.4. Analysis of AFB1 by SPME-CFI-MS
3.5. Examination of Selectivity
3.6. Analysis of Simulated Real Samples
3.7. Comparison of Our Method with Those Existing Methods for Analysis of AFB1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moss, M.O. Risk assessment for aflatoxins in foodstuffs. Int. Biodeterior. Biodegradation 2002, 50, 137–142. [Google Scholar] [CrossRef]
- Kew, M.C. Aflatoxins as a cause of hepatocellular carcinoma. J. Gastrointest. Liver Dis. 2013, 22, 305–310. [Google Scholar]
- Juan, C.; Zinedine, A.; Moltó, J.C.; Idrissi, L.; Mañes, J. Aflatoxins levels in dried fruits and nuts from Rabat-Sale’ area, Morocco. Food Control 2008, 19, 849–853. [Google Scholar] [CrossRef]
- Berg, T. How to establish international limits for mycotoxins in food and feed? Food Control 2003, 14, 219–224. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 165/2010 of 26 February 2010 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Aflatoxins. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010R0165&qid=1643338579869 (accessed on 28 January 2022).
- Lee, N.A.; Wang, S.; Allan, R.D.; Kennedy, I.R. A rapid aflatoxin B1 ELISA: Development and validation with reduced matrix effects for peanuts, corn, pistachio, and Soybeans. J. Agric. Food Chem. 2004, 52, 2746–2755. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.D.; Gomes da Silva, J.L.; Caldas, E.D. Simultaneous analysis of aflatoxins B1, B2, G1, G2, M1 and ochratoxin A in breast milk by high-performance liquid chromatography/fluorescence after liquid-liquid extraction with low temperature purification (LLE-LTP). J. Chromatogr. A 2013, 1304, 61–68. [Google Scholar] [CrossRef]
- Wu, L.; Ding, F.; Yin, W.; Ma, J.; Wang, B.; Nie, A.; Han, H. From electrochemistry to electroluminescence: Development and application in a ratiometric aptasensor for aflatoxin B1. Anal. Chem. 2017, 89, 7578–7585. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, Y.; Li, C.; Jie, G. Versatile Electrochemiluminescence and electrochemical “on–off” assays of methyltransferases and aflatoxin b1 based on a novel multifunctional dna nanotube. Anal. Chem. 2019, 91, 3546–3554. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, L.K.; Elbæk, T.H. Determination of mycotoxins in bovine milk by liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 820, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Q.; Zou, B.; Zhao, X.Y.; Liu, S.; Xu, W.W.; Huang, T.T.; Zong, Q.; Wang, S.W. Rapid qualitative and quantitative analysis of aflatoxin B1 in Pu-erh tea by liquid chromatography-isotope dilution tandem mass spectrometry coupled with the QuEChERS purification method. Anal. Methods 2018, 10, 4776–4783. [Google Scholar] [CrossRef]
- Song, W.; Li, C.; Moezzi, B. Simultaneous determination of bisphenol A, aflatoxin B1, ochratoxin A, and patulin in food matrices by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.L.; Su, X.G.; Wang, H.B. Simultaneous determination of aflatoxin B1, bisphenol A, and 4-nonylphenol in peanut oils by liquid-liquid extraction combined with solid-phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Anal. Methods 2018, 11, 1303–1311. [Google Scholar] [CrossRef]
- Du, L.; Wang, S.; Huang, J.; Chu, C.; Li, R.; Li, Q.; Wang, Q.; Hu, Y.; Cao, J.; Chen, Y.; et al. Determination of aflatoxin M1 and B1 in milk and jujube by miniaturized solid-phase extraction coupled with ultra high performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry. J. Sep. Sci. 2018, 41, 3677–3685. [Google Scholar] [CrossRef] [PubMed]
- McCoy, L.F.; Scholl, P.F.; Schleicher, R.L.; Groopman, J.D.; Powers, C.D.; Pfeiffer, C.M. Analysis of aflatoxin B1-lysine adduct in serum using isotope-dilution liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2203–2210. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-T.; Kandasamy, K.; Chen, Y.-C. Magnetic graphene oxide-based affinity surface-assisted laser desorption/ionization mass spectrometry for screening of aflatoxin B1 from complex samples. Anal. Chem. 2021, 93, 7310–7316. [Google Scholar] [CrossRef]
- Josselin, L.; De Clerck, C.; De Boevre, M.; Moretti, A.; Jijakli, M.H.; Soyeurt, H.; Fauconnier, M.L. Volatile organic compounds emitted by aspergillus flavus strains producing or not aflatoxin B1. Toxins 2021, 13, 705. [Google Scholar] [CrossRef] [PubMed]
- Sheijooni-Fumani, N.; Hassan, J.; Yousefi, S.R. Determination of aflatoxin B1 in cereals by homogeneous liquid-liquid extraction coupled to high performance liquid chromatography-fluorescence detection. J. Sep. Sci. 2011, 34, 1333–1337. [Google Scholar] [CrossRef]
- Corcuera, L.-A.; Ibáñez-Vea, M.; Vettorazzi, A.; Gonzalez-Penas, E.; de Cerain, A.L. Validation of a UHPLC-FLD analytical method for the simultaneous quantification of aflatoxin B1 and ochratoxin a in rat plasma, liver and kidney. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 2733–2740. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Zhang, P.; Fu, X.-F.; Zhou, Y.-X.; Peng, X.-T. Rapid and sensitive detection of aflatoxin B1, B2, G1 and G2 in vegetable oils using bare Fe3O4 as magnetic sorbents coupled with high-performance liquid chromatography with fluorescence detection. J. Chromatogr. Sci. 2020, 58, 678–685. [Google Scholar] [CrossRef]
- Fang, L.; Tian, M.; Yan, X.; Xiao, W. Isolation of Aflatoxin B1 from Moldy Foods by Solid-Phase Extraction Combined with Bifunctional Ionic Liquid-Based Silicas. J. Anal. Methods Chem. 2018, 2018, 8427580. [Google Scholar] [CrossRef] [Green Version]
- Alexovic, M.; Horstkotte, B.; Solich, P.; Sab, J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports. Anal. Chim. Acta 2015, 907, 18–30. [Google Scholar] [CrossRef]
- Survey, A.T. Global Mycotoxin Occurrence in Feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Keller, L.A.M.; Pereyra, M.L.G.; Keller, K.M.; Alonso, V.A.; Oliveira, A.A.; Almeida, T.X.; Barbosa, T.S.; Nunes, L.M.T.; Cavaglieri, L.R.; Rosa, C.A.R. Fungal and mycotoxins contamination in corn silage: Monitoring risk before and after fermentation Fungal and mycotoxins contamination in corn silage: Monitoring risk before and after fermentation. J. Stored Prod. Res. 2013, 52, 42–47. [Google Scholar] [CrossRef]
- Chauhan, Y.; Tatnell, J.; Krosch, S.; Karanja, J.; Gnonlonfin, B.; Wanjuki, I.; Wainaina, J.; Harvey, J. An improved simulation model to predict pre-harvest aflatoxin risk in maize. Food Crop. Res. 2015, 178, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered Pathway Genes in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol. 2007, 8, 713–722. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Grasl-kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar] [CrossRef]
- Food, E.; Authority, S. Outcome of a Public Consultation on the Draft Risk Assessment of Aflatoxins in Food; European Food Safety Authority (EFSA): Parma, Italy, 2020; Volume 17. [Google Scholar] [CrossRef] [Green Version]
- Matabaro, E.; Ishimwe, N.; Uwimbabazi, E.; Lee, B.H. Current immunoassay methods for the rapid detection of aflatoxin in milk and dairy products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 808–820. [Google Scholar] [CrossRef]
- Murphy, P.A.; Hendrich, S.; Landgren, C.; Bryant, C.M. Food mycotoxins: An update. J. Food Sci. 2006, 71, 51–65. [Google Scholar] [CrossRef]
- Freire, L.; Sant’Ana, A.S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 2018, 111, 189–205. [Google Scholar] [CrossRef]
- Berthiller, F.; Cramer, B.; Iha, M.H.; Krska, R.; Lattanzio, V.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; Solfrizzo, M.; Stranska- Zachariasova, M.; et al. Developments in mycotoxin analysis: An update for 2016–2017. World Mycotoxin J. 2018, 10, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gelderblom, W.C.; Shephard, G.S.; African, S.; Vismer, H. Mycotoxins detection methods, management. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; CABI Publishing: Manhattan, KS, USA, 2008; pp. 29–39. ISBN 9781845930820. [Google Scholar]
- Bennett, J.W.; Inamdar, A.A. Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins 2015, 7, 3785–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inamdar, A.A.; Morath, S.; Bennett, J.W. Fungal volatile organic compounds: More than just a funky smell? Annu. Rev. Microbiol. 2020, 74, 101–116. [Google Scholar] [CrossRef]
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 2000, 880, 35–62. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in solid phase microextraction and perspective on future directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef]
- Hu, B.; Ouyang, G.F. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. TrAC Trends Anal. Chem. 2021, 143, 116368. [Google Scholar] [CrossRef]
- Vas, G.; Vekey, K. Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 2004, 39, 233–254. [Google Scholar] [CrossRef]
- Deng, J.W.; Yang, Y.Y.; Wang, X.W.; Luan, T.G. Strategies for coupling solid-phase microextraction with mass spectrometry. TrAC Trends Anal. Chem. 2014, 55, 55–67. [Google Scholar] [CrossRef]
- Fang, L.; Deng, J.W.; Yang, Y.Y.; Wang, X.W.; Chen, B.W.; Liu, H.T.; Zhou, H.Y.; Ouyang, G.F.; Luan, T.G. Coupling solid-phase microextraction with ambient mass spectrometry: Strategies and applications. TrAC Trends Anal. Chem. 2016, 85, 61–72. [Google Scholar] [CrossRef]
- Mochalski, P.; King, J.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Emission rates of selected volatile organic compounds from skin of healthy volunteers. J. Chromatogr. B Analyt. Technol. Biomed. 2014, 959, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Lucero, M.; Estell, R.; Tellez, M.; Fredrickson, E. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 2009, 20, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Rasheed, D.M.; Kamal, I.M. Volatiles and primary metabolites profiling in two Hibiscus sabdariffa (roselle) cultivars via headspace SPME-GC-MS and chemometrics. Food Res. Int. 2015, 78, 327–335. [Google Scholar] [CrossRef] [PubMed]
- San, A.T.; Joyce, D.C.; Hofman, P.J.; Macnish, A.J.; Webb, R.I.; Matovic, N.J.; Williams, C.; De Voss, J.J.; Wong, S.H.; Smyth, H.E. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars. Food Chem. 2017, 221, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conde, F.J.; Afonso, A.M.; Gonzalez, V.; Ayala, J.H. Optimization of an analytical methodology for the determination of alkyl- and methoxy-phenolic compounds by HS-SPME in biomass smoke. Anal. Bioanal. Chem. 2006, 385, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Manzo, A.; Panseri, S.; Vagge, I.; Giorgi, A. Volatile fingerprint of italian populations of orchids using solid phase microextraction and gas chromatography coupled with mass spectrometry. Molecules 2014, 19, 7913–7936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Fonslow, B.R.; Wong, C.C.L.; Nakorchevsky, A.; Yates, I.J.R. Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis–tandem mass spectrometry for proteomic analysis. Anal. Chem. 2012, 84, 8505–8513. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.T.; Saraji, M.; Yousefi, S. Negative electrospray ionization ion mobility spectrometry combined with microextraction in packed syringe for direct analysis of phenoxyacid herbicides in environmental waters. J. Chromatogr. A 2012, 1249, 41–47. [Google Scholar] [CrossRef]
- Hu, B.; Zheng, B.; Rickert, D.; Gomez-Rios, G.A.; Bojko, B.; Pawliszyn, J.; Yao, Z.P. Direct coupling of solid phase microextraction with electrospray ionization mass spectrometry: A Case study for detection of ketamine in urine. Anal. Chim. Acta 2019, 1075, 112–119. [Google Scholar] [CrossRef]
- Feizy, J.; Jahani, M.; Beigbabaei, A. Graphene adsorbent-based solid-phase extraction for aflatoxins clean-up in food samples. Chromatographia 2019, 82, 917–926. [Google Scholar] [CrossRef]
- Geleta, G.S.; Zhao, Z.; Wang, Z. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1. Analyst 2018, 143, 1644–1649. [Google Scholar] [CrossRef]
- Pencil. Available online: http://www.fact-index.com/p/pe/pencil.html (accessed on 24 February 2022).
- Wu, M.-X.; Wang, H.-Y.; Zhang, J.-T.; Guo, Y.L. Multifunctional Carbon Fiber Ionization Mass Spectrometry. Anal. Chem. 2016, 88, 9547–9553. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-L.; Chen, T.-Y.; Chen, Y.-C.; Chen, Y.-C. Carbon fiber ionization mass spectrometry for the analysis of analytes in vapor, liquid, and solid phases. Anal. Chem. 2017, 89, 13458–13465. [Google Scholar] [CrossRef]
- Wu, M.-L.; Chen, T.-Y.; Chen, W.-J.; Faha Baig, M.M.; Wu, Y.-C.; Chen, Y.-C. Carbon fiber ionization mass spectrometry coupled with solid phase microextraction for analysis of Benzo[a]pyrene. Anal. Chim. Acta 2018, 1049, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-L.; Wu, Y.-C.; Chen, Y.-C. Detection of pesticide residues on intact tomatoes by carbon fiber ionization mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, Y.; Li, P.; Xi, H.; Wu, L.; Zhang, J.; Peng, G.; Su, Y. Direct analysis of volatile components from intact jujube by carbon fiber ionization mass spectrometry. BMC Chem. 2019, 13, 125–129. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Chen, Y.-C. Reactive carbon fiber ionization-mass spectrometry for characterization of unsaturated hydrocarbons from plant aroma. Anal. Bioanal. Chem. 2020, 412, 5489–5497. [Google Scholar] [CrossRef]
- Poole, J.J.; Grandy, J.J.; Gomez-Rios, G.A.; Gionfriddo, E.; Pawliszyn, J. Solid phase microextraction on-fiber derivatization using a stable, portable, and reusable pentafluorophenyl hydrazine standard gas generating vial. Anal. Chem. 2016, 88, 6859–6866. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Chen, H.; Zhang, X.; Cooks, R.G.; Ouyang, Z. Rapid screening of anabolic steroids in urine by reactive desorption electrospray ionization. Anal. Chem. 2007, 79, 8327–8332. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef]
- Es’haghi, Z.; Sorayaei, H.; Samadi, F.; Masrournia, M.; Bakherad, Z. Fabrication of a novel nanocomposite based on sol-gel process for hollow fiber-solid phase microextraction of aflatoxins: B1 and B2, in cereals combined with high performance liquid chromatography-diode array detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 3034–3040. [Google Scholar] [CrossRef]
- Quinto, M.; Spadaccino, G.; Palermo, C.; Centonze, D. Determination of aflatoxins in cereal flours by solid-phase microextraction coupled with liquid chromatography and post-column photochemical derivatization-fluorescence detection. J. Chromatogr. A 2009, 1216, 8636–8641. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, Y.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of aflatoxins in food samples by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. J. Chromatogr. A 2009, 1216, 4416–4422. [Google Scholar] [CrossRef] [PubMed]
- Chmangui, A.; Jayasinghe, G.; Driss, M.R.; Touil, S.; Bermejo-Barrera, P.; Bouabdallah, S.; Moreda-Piñeiro, A. Assessment of trace levels of aflatoxins AFB1 and AFB2 in non-dairy beverages by molecularly imprinted polymer based micro solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Methods 2021, 13, 3433–3443. [Google Scholar] [CrossRef]
- Jayasinghe, G.T.M.; Domínguez-González, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1609, 460431. [Google Scholar] [CrossRef]
- Amde, M.; Temsgen, A.; Dechassa, N. Ionic liquid functionalized zinc oxide nanorods for solid-phase microextraction of aflatoxins in food products. J. Food Compos. Anal. 2020, 91, 103528. [Google Scholar] [CrossRef]
- Wu, F.; Xu, C.; Jiang, N.; Wang, J.; Ding, C.F. Poly (methacrylic acid-co-diethenyl-benzene) monolithic microextraction column and its application to simultaneous enrichment and analysis of mycotoxins. Talanta 2018, 178, 1–8. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, J.-J.; Lai, Y.-T.; Chen, Y.-C. Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples. Separations 2022, 9, 199. https://doi.org/10.3390/separations9080199
Tsai J-J, Lai Y-T, Chen Y-C. Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples. Separations. 2022; 9(8):199. https://doi.org/10.3390/separations9080199
Chicago/Turabian StyleTsai, Jia-Jen, Yu-Ting Lai, and Yu-Chie Chen. 2022. "Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples" Separations 9, no. 8: 199. https://doi.org/10.3390/separations9080199
APA StyleTsai, J. -J., Lai, Y. -T., & Chen, Y. -C. (2022). Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples. Separations, 9(8), 199. https://doi.org/10.3390/separations9080199