Separation Methods in Biomedical Analysis, a Booming Field
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, T.H.; Thapa, S.K.; Lee, D.Y.; Chung, S.E.; Lim, J.Y.; Jeong, H.M.; Song, C.H.; Choi, Y.-W.; Cho, S.-M.; Nam, K.-Y.; et al. Pharmacokinetics and Anti-Gastric Ulceration Activity of Oral Administration of Aceclofenac and Esomeprazole in Rats. Pharmaceutics 2018, 10, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desrosiers, M.; Pelletier, G.; Dieme, D.; Côté, J.; Jomaa, M.; Nong, A.; Bouchard, M. Toxicokinetics in Rats and Modeling to Support the Interpretation of Biomonitoring Data for Rare-Earth Elements. Environ. Int. 2021, 155, 106685. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.G.; Landersdorfer, C.B. Antibiotic Pharmacokinetic/Pharmacodynamic Modelling: MIC, Pharmacodynamic Indices and Beyond. Int. J. Antimicrob. Agents 2021, 58, 106368. [Google Scholar] [CrossRef] [PubMed]
- Luke, M.C.; Kozak, D. Regulating Generic Ophthalmologic Drug Bioequivalence—Envisioning Accessibility for Patients. J. Ocul. Pharmacol. Ther. 2021, 37, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Christians, U.; Klawitter, J.; Clavijo, C.F. Bioequivalence Testing of Immunosuppressants: Concepts and Misconceptions. Kidney Int. 2010, 77, S1–S7. [Google Scholar] [CrossRef] [Green Version]
- Moein, M.M.; El Beqqali, A.; Abdel-Rehim, M. Bioanalytical Method Development and Validation: Critical Concepts and Strategies. J. Chromatogr. B 2017, 1043, 3–11. [Google Scholar] [CrossRef]
- Van Echelpoel, R.; de Jong, M.; Daems, D.; Van Espen, P.; De Wael, K. Unlocking the Full Potential of Voltammetric Data Analysis: A Novel Peak Recognition Approach for (Bio)Analytical Applications. Talanta 2021, 233, 122605. [Google Scholar] [CrossRef]
- Sofalvi, S.; Schueler, H.E. Assessment of Bioanalytical Method Validation Data Utilizing Heteroscedastic Seven-Point Linear Calibration Curves by EZSTATSG1 Customized Microsoft Excel Template. J. Anal. Toxicol. 2021, 45, 772–779. [Google Scholar] [CrossRef]
- Sobiech, M.; Luliński, P.; Wieczorek, P.P.; Marć, M. Quantum and Carbon Dots Conjugated Molecularly Imprinted Polymers as Advanced Nanomaterials for Selective Recognition of Analytes in Environmental, Food and Biomedical Applications. TrAC Trends Anal. Chem. 2021, 142, 116306. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Herqash, R.N.; Alqahtani, F.; Ahamad, S.R.; Nasr, F.A.; Noman, O.M. GC-MS Method for Quantification and Pharmacokinetic Study of Four Volatile Compounds in Rat Plasma after Oral Administration of Commiphora Myrrh (Nees) Engl. Resin and In Vitro Cytotoxic Evaluation. Separations 2021, 8, 239. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, X.; Liu, J.; Jia, M.; Blanchard, C.; Zhou, Z. Characterizing the Volatile Compounds of Different Sorghum Culti-vars by Both GC-MS and HS-GC-IMS. Food Res. Int. 2021, 140, 109975. [Google Scholar] [CrossRef] [PubMed]
- Kaltbach, P.; Gillmeister, M.; Kabrodt, K.; Schellenberg, I. Screening of Volatile Compounds in Mate (Ilex Paraguariensis) Tea—Brazilian Chimarrão Type—By HS-SPDE and Hydrodistillation Coupled to GC-MS. Separations 2021, 8, 131. [Google Scholar] [CrossRef]
- Rashid, A.; Ali, V.; Khajuria, M.; Faiz, S.; Gairola, S.; Vyas, D. GC–MS Based Metabolomic Approach to Understand Nutraceutical Potential of Cannabis Seeds from Two Different Environments. Food Chem. 2021, 339, 128076. [Google Scholar] [CrossRef] [PubMed]
- Ishimura, T.; Iwai, I.; Matsui, K.; Mattonai, M.; Watanabe, A.; Robberson, W.; Cook, A.-M.; Allen, H.L.; Pipkin, W.; Teramae, N.; et al. Qualitative and Quantitative Analysis of Mixtures of Microplastics in the Presence of Calcium Carbonate by Pyroly-sis-GC/MS. J. Anal. Appl. Pyrolysis 2021, 157, 105188. [Google Scholar] [CrossRef]
- Steiner, D.; Malachová, A.; Sulyok, M.; Krska, R. Challenges and Future Directions in LC-MS-Based Multiclass Method De-velopment for the Quantification of Food Contaminants. Anal. Bioanal. Chem. 2021, 413, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Arvapally, M.; Asati, A.; Nagendla, N.K.; Mudiam, M.K.R. Development of an Analytical Method for the Quantitative De-termination of Multi-Class Nutrients in Different Food Matrices by Solid-Phase Extraction and Liquid Chromatog-raphy-Tandem Mass Spectrometry Using Design of Experiments. Food Chem. 2021, 341, 128173. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, M.; Kato, S.; Arakawa, N.; Otsuka, M.; Hamano, T.; Kashiwagi, N.; Yabuki, A.; Yamato, O. Quantification of His-tidine-Containing Dipeptides in Dolphin Serum Using a Reversed-Phase Ion-Pair High-Performance Liquid Chromatography Method. Separations 2021, 8, 128. [Google Scholar] [CrossRef]
- Feng, J.; Feng, J.; Ji, X.; Li, C.; Han, S.; Sun, H.; Sun, M. Recent Advances of Covalent Organic Frameworks for Solid-Phase Microextraction. TrAC Trends Anal. Chem. 2021, 137, 116208. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Jing, X.; Zhou, H.; Wang, Y.; Ye, J.; Chu, Q. Tween 20-Capped Gold Nanoparticles for Selective Extrac-tion of Free Low-Molecular-Weight Thiols in Saliva Followed by Capillary Electrophoresis with Contactless Conductivity Detection. J. Chromatogr. B 2021, 1176, 122756. [Google Scholar] [CrossRef]
- Sahebnasagh, S.; Fadaee Kakhki, J.; Ebrahimi, M.; Bozorgmehr, M.R.; Abedi, M.R. Pre-Concentration and Determination of Fluoxetine in Hospital Wastewater and Human Hair Samples Using Solid-Phase µ-Extraction by Silver Nanoparticles Fol-lowed by Spectro-Fluorimetric. Chem. Methodol. 2021, 5, 211–218. [Google Scholar] [CrossRef]
- Chen, M.; Liu, T.; Zhang, X.; Zhang, R.; Tang, S.; Yuan, Y.; Xie, Z.; Liu, Y.; Wang, H.; Fedorovich, K.V.; et al. Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel. Adv. Funct. Mater. 2021, 31, 2100106. [Google Scholar] [CrossRef]
- Chiarello, M.; Anfossi, L.; Cavalera, S.; Di Nardo, F.; Serra, T.; Baggiani, C. NanoMIP-Based Solid Phase Extraction of Fluo-roquinolones from Human Urine: A Proof-of-Concept Study. Separations 2021, 8, 226. [Google Scholar] [CrossRef]
- Pallotta, A.; Boudier, A.; Creusot, B.; Brun, E.; Sicard-Roselli, C.; Bazzi, R.; Roux, S.; Clarot, I. Quality Control of Gold Nano-particles as Pharmaceutical Ingredients. Int. J. Pharm. 2019, 569, 118583. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, T.M.; Mühlfeld, C.; Vanhecke, D.; Ochs, M. A Review of Recent Methods for Efficiently Quantifying Immunogold and Other Nanoparticles Using TEM Sections through Cells, Tissues and Organs. Ann. Anat.-Anat. Anz. 2009, 191, 153–170. [Google Scholar] [CrossRef]
- Bocca, B.; Caimi, S.; Senofonte, O.; Alimonti, A.; Petrucci, F. ICP-MS Based Methods to Characterize Nanoparticles of TiO2 and ZnO in Sunscreens with Focus on Regulatory and Safety Issues. Sci. Total Environ. 2018, 630, 922–930. [Google Scholar] [CrossRef]
- Pallotta, A.; Clarot, I.; Sobocinski, J.; Fattal, E.; Boudier, A. Nanotechnologies for Medical Devices: Potentialities and Risks. ACS Appl. Bio Mater. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- Chaigneau, T.; Pallotta, A.; Benaddi, F.Z.; Sancey, L.; Chakir, S.; Boudier, A.; Clarot, I. Monitoring of Gold Biodistribution from Nanoparticles Using a HPLC-Visible Method. Separations 2021, 8, 215. [Google Scholar] [CrossRef]
- Sharma, A.; Yu, E.; Morose, G.; Nguyen, D.T.; Chen, W.-T. Designing Safer Solvents to Replace Methylene Chloride for Liq-uid Chromatography Applications Using Thin-Layer Chromatography as a Screening Tool. Separations 2021, 8, 172. [Google Scholar] [CrossRef]
- El-Behairy, M.F.; Hassan, R.M.; Sundby, E. Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines. Separations 2021, 8, 165. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallotta, A.; Boudier, A.; Gouyon, J.; Clarot, I. Separation Methods in Biomedical Analysis, a Booming Field. Separations 2022, 9, 51. https://doi.org/10.3390/separations9020051
Pallotta A, Boudier A, Gouyon J, Clarot I. Separation Methods in Biomedical Analysis, a Booming Field. Separations. 2022; 9(2):51. https://doi.org/10.3390/separations9020051
Chicago/Turabian StylePallotta, Arnaud, Ariane Boudier, Jérémie Gouyon, and Igor Clarot. 2022. "Separation Methods in Biomedical Analysis, a Booming Field" Separations 9, no. 2: 51. https://doi.org/10.3390/separations9020051
APA StylePallotta, A., Boudier, A., Gouyon, J., & Clarot, I. (2022). Separation Methods in Biomedical Analysis, a Booming Field. Separations, 9(2), 51. https://doi.org/10.3390/separations9020051