Extraction of Phenolic Compound from Model Pyrolysis Oil Using Deep Eutectic Solvents: Computational Screening and Experimental Validation
Abstract
1. Introduction
2. Computational Methodology
Geometry Optimization
3. Materials and Methods
3.1. DES Synthesis and Characterization
3.2. Liquid–Liquid Extraction
4. Results and Discussion
4.1. Computational Screening Using COSMO-RS
4.2. Physical Properties of DES
4.3. Experimental Results
4.4. Consistency Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Venkata Mohan, S.; Pandey, A. Chapter 1—Sustainable Hydrogen Production: An Introduction. In Biohydrogen, 2nd ed.; Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–23. [Google Scholar]
- Yang, H.; Yao, J.; Chen, G.; Ma, W.; Yan, B.; Qi, Y. Overview of upgrading of pyrolysis oil of biomass. Energy Procedia 2014, 61, 1306–1309. [Google Scholar] [CrossRef]
- Salleh, M.Z.M.; Hadj-Kali, M.; Wazeer, I.; Ali, E.; Hashim, M.A. Extractive separation of benzene and cyclohexane using binary mixtures of ionic liquids. J. Mol. Liq. 2019, 285, 716–726. [Google Scholar] [CrossRef]
- Mulyono, S.; Hizaddin, H.F.; Wazeer, I.; Alqusair, O.; Ali, E.; Hashim, M.A.; Hadj-Kali, M.K. Liquid-liquid equilibria data for the separation of ethylbenzene/styrene mixtures using ammonium-based deep eutectic solvents. J. Chem. Thermodyn. 2019, 135, 296–304. [Google Scholar] [CrossRef]
- Hadj-Kali, M.K.; Al-Anazi, A.M.; Alhawtali, S.M.; Wazeer, I. Liquid-liquid separation of n-hexane/1-hexene and cyclohexane/cyclohexene using deep eutectic solvents. J. Mol. Liq. 2021, 344, 117776. [Google Scholar]
- Mulyono, S.; Hizaddin, H.F.; Alnashef, I.M.; Hashim, M.A.; Fakeeha, A.H.; Hadj-Kali, M.K. Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent—experiments and COSMO-RS prediction. RSC Adv. 2014, 4, 17597–17606. [Google Scholar] [CrossRef]
- Hadj-Kali, M.K.; Althuluth, M.; Mokraoui, S.; Wazeer, I.; Ali, E.; Richon, D. Screening of ionic liquids for gas separation using COSMO-RS and comparison between performances of ionic liquids and aqueous alkanolamine solutions. Chem. Eng. Commun. 2020, 207, 1264–1277. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; De la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Wazeer, I.; Hadj-Kali, M.K.; Al-Nashef, I.M. Utilization of deep eutectic solvents to reduce the release of hazardous gases to the atmosphere: A critical review. Molecules 2020, 26, 75. [Google Scholar] [CrossRef]
- Wazeer, I.; AlNashef, I.M.; Al-Zahrani, A.A.; Hadj-Kali, M.K. The subtle but substantial distinction between ammonium-and phosphonium-based deep eutectic solvents. J. Mol. Liq. 2021, 332, 115838. [Google Scholar] [CrossRef]
- Shahbaz, K.; Mjalli, F.; Hashim, M.; AlNashef, I. Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energ Fuel 2011, 25, 2671–2678. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, H.; Row, K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci. 2015, 38, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; Requejo, P.F.; Kroon, M.C. Aliphatic–aromatic separation using deep eutectic solvents as extracting agents. Ind. Eng. Chem. Res. 2015, 54, 11404–11412. [Google Scholar] [CrossRef]
- Hadj-Kali, M.K.; Salleh, M.Z.M.; Wazeer, I.; Alhadid, A.; Mulyono, S. Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure. Molecules 2022, 27, 4041. [Google Scholar] [CrossRef] [PubMed]
- Jiao, T.; Qin, X.; Zhang, H.; Zhang, W.; Zhang, Y.; Liang, P. Separation of phenol and pyridine from coal tar via liquid–liquid extraction using deep eutectic solvents. Chem. Eng. Res. Des. 2019, 145, 112–121. [Google Scholar] [CrossRef]
- Jiao, T.; Zhuang, X.; He, H.; Li, C.; Chen, H.; Zhang, S. Separation of phenolic compounds from coal tar via liquid–liquid extraction using amide compounds. Ind. Eng. Chem. Res. 2015, 54, 2573–2579. [Google Scholar] [CrossRef]
- Yi, L.; Feng, J.; Li, W.-Y. Separation of phenolic compounds from coal liquefaction oil by choline chloride-glycerol deep eutectic solvents. Energy Procedia 2019, 158, 5169–5174. [Google Scholar] [CrossRef]
- Li, G.; Xie, Q.; Liu, Q.; Liu, J.; Wan, C.; Liang, D.; Zhang, H. Separation of phenolic compounds from oil mixtures by betaine-based deep eutectic solvents. Asia-Pac. J. Chem. Eng. 2020, 15, e2515. [Google Scholar] [CrossRef]
- Wojeicchowski, J.P.; Ferreira, A.M.; Abranches, D.O.; Mafra, M.R.; Coutinho, J.A. Using COSMO-RS in the Design of Deep Eutectic Solvents for the Extraction of Antioxidants from Rosemary. ACS Sustain. Chem. Eng. 2020, 8, 12132–12141. [Google Scholar] [CrossRef]
- Paduszyński, K. An overview of the performance of the COSMO-RS approach in predicting the activity coefficients of molecular solutes in ionic liquids and derived properties at infinite dilution. Phys. Chem. Chem. Phys. 2017, 19, 11835–11850. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef]
- Wibowo, H.; Liao, W.; Zhou, X.; Yu, C.; Rahim, D.A.; Hantoko, D.; Qun, H.; Yan, M. Study on the effect of operating parameters towards CO2 absorption behavior of choline chloride–monoethanolamine deep eutectic solvent and its aqueous solutions. Chem. Eng. Process.-Process Intensif. 2020, 157, 108142. [Google Scholar] [CrossRef]
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy Fuel 2015, 29, 2616–2644. [Google Scholar] [CrossRef]
- Van Osch, D.J.G.P.; Dietz, C.H.J.T.; Warrag, S.E.E.; Kroon, M.C. The Curious Case of Hydrophobic Deep Eutectic Solvents: A Story on the Discovery, Design, and Applications. ACS Sustain. Chem. Eng. 2020, 8, 10591–10612. [Google Scholar] [CrossRef]
- Jibril, B.; Mjalli, F.; Naser, J.; Sani Gano, Z. New tetrapropylammonium bromide-based deep eutectic solvents: Synthesis and characterizations. J. Mol. Liq. 2014, 199, 462–469. [Google Scholar] [CrossRef]
- Burghoff, B.; Goetheer, E.L.V.; Haan, A.B.d. COSMO-RS-Based Extractant Screening for Phenol Extraction As Model System. Ind. Eng. Chem. Res. 2008, 47, 4263–4269. [Google Scholar] [CrossRef]
- Kamarudin, A.F.; Hizaddin, H.F.; El-Blidi, L.; Ali, E.; Hashim, M.A.; Hadj-Kali, M.K. Performance of p-Toluenesulfonic Acid–Based Deep Eutectic Solvent in Denitrogenation: Computational Screening and Experimental Validation. Molecules 2020, 25, 5093. [Google Scholar] [CrossRef]
- Sobiesiak, M. Chemical Structure of Phenols and Its Consequence for Sorption Processes. In Phenolic Compounds-Natural Sources, Importance and Applications; IntechOpen: London, UK, 2017. [Google Scholar]
- Lemaoui, T.; Darwish, A.S.; Hammoudi, N.E.H.; Abu Hatab, F.; Attoui, A.; Alnashef, I.M.; Benguerba, Y. Prediction of Electrical Conductivity of Deep Eutectic Solvents Using COSMO-RS Sigma Profiles as Molecular Descriptors: A Quantitative Structure–Property Relationship Study. Ind. Eng. Chem. Res. 2020, 59, 13343–13354. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Ibrahim, S.; Hayyan, A.; Hashim, M.A. Physical properties of ethylene glycol-based deep eutectic solvents. J. Mol. Liq. 2019, 276, 794–800. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Murshid, G.; Al-Zakwani, S.; Hayyan, A. Monoethanolamine-based deep eutectic solvents, their synthesis and characterization. Fluid Phase Equilib. 2017, 448, 30–40. [Google Scholar] [CrossRef]
- Meindersma, G.W.; De Haan, A.B. Conceptual process design for aromatic/aliphatic separation with ionic liquids. Chem. Eng. Res. Des. 2008, 86, 745–752. [Google Scholar] [CrossRef]
Compound | Supplier | Purity |
---|---|---|
Toluene | VWR (Radnor, PA, USA) | 0.995 |
n-heptane | Scharlau (Barcelona, Spain) | 0.99 |
Phenol | Loba Chemie (Mumbai, India) | ≥0.99 |
Ethylene glycol | Merck (Darmstadt, Germany) | 0.99 |
Methyltriphenylphosphonium bromide | Acros Organics (Geel, Belgium) | ≥0.98 |
Monoethanolamine | Sigma-Aldrich (Poole, UK) | ≥0.98 |
Choline chloride | Acros Organics (Geel, Belgium) | 0.99 |
Deuterated chloroform | Merck (Darmstadt, Germany) | ≥0.998 |
Dimethyl sulfoxide-D6 | Merck (Darmstadt, Germany) | ≥0.998 |
Parameter | Value |
---|---|
Temperature of injector (K) | 558.15 |
Temperature of detector (K) | 558.15 |
Carrier gas pressure (Kpa) | 60 |
Oven program | 303.15 K for 4 min |
303.15 K to 473.15 K | |
Rate: 20 K/min |
No. | HBA | HBD | Abbreviation | References |
---|---|---|---|---|
1 | Betaine | Glycerol | Bet/Gly (1:2) | [18] |
2 | Betaine | DL—lactic acid | Bet/Laa (1:2) | [18] |
3 | Betaine | Levulinic acid | Bet/Lea (1:2) | [18] |
4 | Betaine | Citric acid | Bet/Cia (1:1) | [21] |
5 | Choline chloride | Glycerol | ChCl/Gly (1:1) | [17] |
6 | Choline chloride | Malic acid | ChCl/Maa (1:1) | [17] |
7 | Choline chloride | Triethylene glycol | ChCl/TEG (1:3) | [17] |
8 | Choline chloride | Monoethanolamine | ChCl/MEA (1:1) | [17] |
9 | Choline chloride | Monoethanolamine | ChCl/MEA (1:5) | [22] |
10 | Choline chloride | Urea | ChCl/Urea (1:2) | [23] |
11 | Choline chloride | 1,1-dimethyl urea | ChCl/DMU (1:2) | [24] |
12 | Choline chloride | Phenylpropionic acid | ChCl/Ppa (1:2) | [25] |
13 | Choline chloride | Acetamide | ChCl/Ace (1:2) | [24] |
14 | Choline chloride | 1,4-butanediol | ChCl/However, (1:3) | [24] |
15 | Tetrabutylammonium chloride | Levulinic acid | TBACl/Lea (2:1) | [26] |
16 | Tetrabutylammonium chloride | Acetic acid | TBACl/Aca (1:1) | [26] |
17 | Tetrabutylammonium chloride | Triethylene glycol | TBACl/TEG (3:1) | [25] |
18 | Tetrapropylammonium bromide | Glycerol | TPABr/Gly (1:2) | [27] |
19 | Tetrapropylammonium bromide | Ethylene glycol | TPABr/EG (1:3) | [25] |
20 | N,N-diethylammonium chloride | Glycerol | DACl/Gly (1:2) | [25] |
21 | N,N-diethylethanolammonium chloride | Ethylene glycol | DEACl/EG (1:3) | [25] |
22 | Methyltriphenylphosphonium bromide | Glycerol | MTPPBr/Gly (1:3) | [25] |
23 | Methyltriphenylphosphonium bromide | Ethylene glycol | MTPPBr/EG (1:3) | [25] |
24 | Methyltriphenylphosphonium bromide | Triethylene glycol | MTPPBr/TEG (1:5) | [25] |
DES-Rich Phase (Extract) | Hydrocarbon-Rich Phase (Raffinate) | D | ||||
---|---|---|---|---|---|---|
{toluene (1) + phenol (2) + MTPPBr/EG (1:3) (3)} | ||||||
0.2486 | 0.1552 | 0.5962 | 0.9996 | 0.0004 | 0 | 427 ± 5 |
0.2628 | 0.2739 | 0.4638 | 0.9992 | 0.0008 | 0 | 339 ± 4 |
0.3098 | 0.3159 | 0.3743 | 0.9988 | 0.0012 | 0 | 272 ± 2 |
0.3278 | 0.3590 | 0.3131 | 0.9983 | 0.0017 | 0 | 212 ± 2 |
0.3536 | 0.3818 | 0.2646 | 0.9978 | 0.0022 | 0 | 175 ± 2 |
{heptane (1) + phenol (2) + MTPPBr/EG (1:3) (3)} | ||||||
0.0051 | 0.2248 | 0.7701 | 0.9999 | 0.0001 | 0 | 2081 ± 91 |
0.0084 | 0.3646 | 0.6270 | 0.9999 | 0.0001 | 0 | 3087 ± 4 |
0.0077 | 0.4614 | 0.5309 | 0.9999 | 0.0001 | 0 | 3128 ± 26 |
0.0096 | 0.5071 | 0.4834 | 0.9998 | 0.0002 | 0 | 2378 ± 6 |
0.0086 | 0.5301 | 0.4612 | 0.9998 | 0.0002 | 0 | 2356 ± 7 |
{toluene (1) + phenol (2) + ChCl/MEA (1:5) (3)} | ||||||
0.1178 | 0.1639 | 0.7183 | 0.9996 | 0.0004 | 0 | 380 ± 4 |
0.1207 | 0.2788 | 0.6005 | 0.9991 | 0.0009 | 0 | 307 ± 2 |
0.1295 | 0.3567 | 0.5138 | 0.9981 | 0.0019 | 0 | 184 ± 2 |
0.1294 | 0.4235 | 0.4471 | 0.9968 | 0.0032 | 0 | 132 ± 3 |
0.1339 | 0.4612 | 0.4049 | 0.9949 | 0.0051 | 0 | 91 ± 1 |
{heptane (1) + phenol (2) + ChCl/MEA (1:5) (3)} | ||||||
0.0003 | 0.1576 | 0.8421 | 0.9989 | 0.0011 | 0 | 149 ± 9 |
0.0006 | 0.1883 | 0.8111 | 0.9990 | 0.0010 | 0 | 185 ± 4 |
0.0009 | 0.2739 | 0.7253 | 0.9986 | 0.0014 | 0 | 195 ± 4 |
0.0011 | 0.3133 | 0.6856 | 0.9985 | 0.0015 | 0 | 204 ± 2 |
0.0011 | 0.4074 | 0.5915 | 0.9982 | 0.0018 | 0 | 228 ± 4 |
0.0003 | 0.1576 | 0.8421 | 0.9989 | 0.0011 | 0 | 149 ± 9 |
Ternary System | Hand | Othmer-Tobias | ||||
---|---|---|---|---|---|---|
a | b | R2 | c | d | R2 | |
MTPPBr/EG (1:3) + phenol + toluene | 1.046 | −4.684 | 0.998 | 1.257 | −5.144 | 0.995 |
MTPPBr/EG (1:3) + phenol + heptane | 0.533 | −7.714 | 0.923 | 0.535 | −7.720 | 0.926 |
ChCl/MEA (1:5) + phenol + toluene | 1.523 | −3.243 | 0.978 | 1.856 | −3.189 | 0.989 |
ChCl/MEA (1:5) + phenol + heptane | 0.453 | −5.505 | 0.957 | 0.452 | −5.507 | 0.957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hizaddin, H.F.; Wazeer, I.; Huzaimi, N.A.M.; El Blidi, L.; Hashim, M.A.; Lévêque, J.-M.; Hadj-Kali, M.K. Extraction of Phenolic Compound from Model Pyrolysis Oil Using Deep Eutectic Solvents: Computational Screening and Experimental Validation. Separations 2022, 9, 336. https://doi.org/10.3390/separations9110336
Hizaddin HF, Wazeer I, Huzaimi NAM, El Blidi L, Hashim MA, Lévêque J-M, Hadj-Kali MK. Extraction of Phenolic Compound from Model Pyrolysis Oil Using Deep Eutectic Solvents: Computational Screening and Experimental Validation. Separations. 2022; 9(11):336. https://doi.org/10.3390/separations9110336
Chicago/Turabian StyleHizaddin, Hanee F., Irfan Wazeer, Nur Afrina Muhammad Huzaimi, Lahssen El Blidi, Mohd Ali Hashim, Jean-Marc Lévêque, and Mohamed K. Hadj-Kali. 2022. "Extraction of Phenolic Compound from Model Pyrolysis Oil Using Deep Eutectic Solvents: Computational Screening and Experimental Validation" Separations 9, no. 11: 336. https://doi.org/10.3390/separations9110336
APA StyleHizaddin, H. F., Wazeer, I., Huzaimi, N. A. M., El Blidi, L., Hashim, M. A., Lévêque, J.-M., & Hadj-Kali, M. K. (2022). Extraction of Phenolic Compound from Model Pyrolysis Oil Using Deep Eutectic Solvents: Computational Screening and Experimental Validation. Separations, 9(11), 336. https://doi.org/10.3390/separations9110336