Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extract Preparation
2.4. UHPLC–ESI–MS/MS Conditions for Analysis
3. Results and Discussion
3.1. Metabolomic Profiling Using UHPLC–ESI–MS/MS
3.1.1. Organic Acids
3.1.2. Cinnamic Acid Derivatives
3.1.3. Flavonoids
3.1.4. Terpenes and Their Derivatives
3.1.5. Fatty Acids
3.1.6. Unidentified Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruckner, J.V.; Anand, S.S.; Warren, D.A. Toxic effects of solvents and vapors. In Casarette and Doull’s Essential of Toxicology: The Basic Science of Poison; Klaass, E., Ed.; McGraw-Hill: New York, NY, USA, 2008; pp. 981–1051. [Google Scholar]
- Chemat, F.; Abert, M.A.; Ravi, H.K. Toward petroleum-free with plant-based chemistry. Curr. Opin. Green Sustain. Chem. 2021, 28, 100450. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Cvjetko-Bubalo, M.; Vidović, S.; Radojčić-Redovniković, I.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Aparicio, S.; Alcalde, R. The green solvent ethyl lactate: An experimental and theoretical characterization. Green Chem. 2009, 11, 65–78. [Google Scholar] [CrossRef]
- Pereira, C.S.M.; Silva, V.M.T.M.; Rodrigues, A.E. Ethyl lactate as a solvent: Properties, applications and production processes—A review. Green Chem. 2011, 13, 2658–2671. [Google Scholar] [CrossRef]
- Pereira, C.S.; Rodrigues, A.E. Ethyl lactate main properties, production processes, and applications. In Alternative Solvents for Natural Products Extraction; Springer: Berlin/Heidelberg, Germany, 2014; pp. 107–125. [Google Scholar]
- Bussmann, R.W.; Paniagua-Zambrana, N.Y.; Moya-Huanca, L.A.; Hart, R. Changing markets—Medicinal plants in the markets of La Paz and El Alto, Bolivia. J. Ethnopharmacol. 2016, 193, 76–95. [Google Scholar] [CrossRef]
- Macía, M.J.; García, E.; Vidaurre, P.J. An ethnobotanical survey of medicinal plants commercialized in the markets of la Paz and El Alto, Bolivia. J. Ethnopharmacol. 2005, 97, 337–350. [Google Scholar] [CrossRef]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Celiktas, O.Y.; Kocabas, E.E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H.C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Leporini, M.; Bonesi, M.; Loizzo, M.R.; Passalacqua, N.G.; Tundis, R. The essential oil of Salvia rosmarinus spenn. From Italy as a source of health-promoting compounds: Chemical profile and antioxidant and cholinesterase inhibitory activity. Plants 2020, 9, 798. [Google Scholar] [CrossRef]
- Borges, R.S.; Lima, E.S.; Keita, H.; Ferreira, I.M.; Fernandes, C.P.; Cruz, R.A.S.; Duarte, J.L.; Velázquez-Moyado, J.; Ortiz, B.L.S.; Castro, A.N.; et al. Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology 2017, 26, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Ramos, F.; Melo, N.R.; Sanches-Silva, A. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. [Google Scholar] [CrossRef]
- González-Vallinas, M.; Reglero, G.; Ramírez de Molina, A. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy. Nutr. Cancer 2015, 67, 1223–1231. [Google Scholar] [CrossRef]
- Begum, A.; Sandhya, S.; Ali, S.S.; Vinod, K.R.; Reddy, S.; Banji, D. An in-depth review on the medicinal flora Rosmarinus officinalis (lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–73. [Google Scholar]
- Hamidpour, R.; Hamidpour, S.; Elias, G. Rosmarinus Officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Antidiabetic, Antidepressant, Neuroprotective, Anti-Inflammatory, and Anti-Obesity Treatment. Biomed. J. Sci. Tech. Res. 2017, 1. [Google Scholar] [CrossRef]
- Malvezzi De Macedo, L.; Mendes dos Santos, É.; Militao, L.; Lacalendola Tundisi, L.; Artem Ataide, J.; Barbosa Souto, E.; Gava Mazzola, P. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) A Review. Plants 2020, 9, 651. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; García, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalisL.: An update review of its phytochemistry and biological activity. Futur. Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [Green Version]
- Halket, J.M.; Waterman, D.; Przyborowska, A.M.; Patel, R.K.P.; Fraser, P.D. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 2005, 56, 219–243. [Google Scholar] [CrossRef] [Green Version]
- Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E. Challenges, progress and promises of metabolite annotation for LC—MS-based metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44–50. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-Spectrum Analysis of Bioactive Compounds in Rosemary ( Rosmarinus officinalis L.) as Influenced by Different Extraction Methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef]
- Achour, M.; Mateos, R.; Fredj, B.; Mtiraoui, A.; Bravo, L.; Saguem, S. A Comprehensive Characterisation of Rosemary tea Obtained from Rosmarinus officinalis L. Collected in a sub-Humid Area of Tunisia. Phytochem. Anal. 2017, 29, 81–100. [Google Scholar] [CrossRef]
- Pérez-Mendoza, M.B.; Llorens-escobar, L.; Vanegas, P.E.; Cifuentes, A.; Ibañez, E.; Villar-Martínez, A.A. Chemical characterization of leaves and calli extracts of Rosmarinus officinalis by UHPLC-MS. Electrophoresis 2019, 41, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Velamuri, R.; Sharma, Y.; Fagan, J.; Schaefer, J. Application of UHPLC-ESI-QTOF-MS in Phytochemical Profiling of Sage (Salvia officinalis) and Rosemary (Rosmarinus officinalis). Planta Medica Int. Open 2020, 7, e133–e144. [Google Scholar] [CrossRef]
- Brindisi, M.; Bouzidi, C.; Frattaruolo, L.; Loizzo, M.R.; Tundis, R.; Dugay, A.; Deguin, B.; Cappello, A.R.; Cappello, M.S. Chemical Profile, Antioxidant, Anti-inflammatory, and Anti-cancer Effects of Italian Salvia rosmarinus spenn. Methanol Leaves Extracts. Antioxidants 2020, 9, 826. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Rai, D.; Brunton, N.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of Phenolics Composition in Lamiaceae Spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Borrás-Linares, I.; Stojanović, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef] [Green Version]
- Santana-Méridas, O.; Polissiou, M.; Izquierdo-Melero, M.E.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del-Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.D.P.; García-Cañas, V.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Comparative study of green sub- and supercritical processes to obtain carnosic acid and carnosol-enriched rosemary extracts with in vitro anti-proliferative activity on colon cancer cells. Int. J. Mol. Sci. 2016, 17, 2046. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Alford, A.R.; Niemeyer, E.D. Variation in phenolic profiles and antioxidant properties among medicinal and culinary herbs of the Lamiaceae family. J. Food Meas. Charact. 2020, 14, 1720–1732. [Google Scholar] [CrossRef]
- Karim, N.; Khan, I.; Abdelhalim, A.; Abdel-Halim, H.; Hanrahan, J.R. Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice. Biomed. Pharmacother. 2017, 96, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; He, K.; Roller, M.; Lai, C.S.; Shao, X.; Pan, M.H.; Ho, C.T. Flavonoids and phenolic compounds from Rosmarinus officinalis. J. Agric. Food Chem. 2010, 58, 5363–5367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fons, L.; Aranda, F.J.; Guillén, J.; Villalaín, J.; Micol, V. Rosemary (Rosmarinus officinalis) diterpenes affect lipid polymorphism and fluidity in phospholipid membranes. Arch. Biochem. Biophys. 2006, 453, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Luis, J.G.; San Andrés, L. C-16 Hydroxylated Abietane Diterpenes From Salvia mellifera. Phytochemistry 1993, 33, 635–638. [Google Scholar] [CrossRef]
- Gonzalez, A.G.; Herrera, J.R.; Luis, J.G.; Ravelo, A.G. Salvicanaric acid, a new diterpene from Salvia canariensis. J. Nat. Prod. 1987, 50, 341–348. [Google Scholar] [CrossRef]
- Kua, Y.L.; Gan, S.; Morris, A.; Ng, H.K. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain. Chem. Pharm. 2016, 4, 21–31. [Google Scholar] [CrossRef]
- Bermejo, D.V.; Luna, P.; Manic, M.S.; Najdanovic-Visak, V.; Reglero, G.; Fornari, T. Extraction of caffeine from natural matter using a bio-renewable agrochemical solvent. Food Bioprod. Process. 2013, 91, 303–309. [Google Scholar] [CrossRef]
- Bermejo, D.V.; Mendiola, J.A.; Ibáñez, E.; Reglero, G.; Fornari, T. Pressurized liquid extraction of caffeine and catechins from green tea leaves using ethyl lactate, water and ethyl lactate + water mixtures. Food Bioprod. Process. 2015, 96, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Bundeesomchok, K.; Filly, A.; Rakotomanomana, N.; Panichayupakaranant, P.; Chemat, F. Extraction of α-mangostin from Garcinia mangostana L. using alternative solvents: Computational predictive and experimental studies. LWT Food Sci. Technol. 2016, 65, 297–303. [Google Scholar] [CrossRef]
- Ishida, B.K.; Chapman, M.H. Carotenoid extraction from plants using a novel, environmentally friendly solvent. J. Agric. Food Chem. 2009, 57, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Lores, M.; Pájaro, M.; Álvarez-casas, M.; Domínguez, J.; García-jares, C. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems. Talanta 2015, 140, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Climati, E.; Mastrogiovanni, F.; Valeri, M.; Salvini, L.; Bonechi, C.; Mamadalieva, N.Z.; Egamberdieva, D.; Taddei, A.R.; Tiezzi, A. Methyl carnosate, an antibacterial diterpene isolated from Salvia officinalis leaves. Nat. Prod. Commun. 2013, 8, 429–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.W.; Frankel, E.N.; Schwarz, K.; Aeschbach, R.; German, J.B. Antioxidant Activity of Carnosic Acid and Methyl Carnosate in Bulk Oils and Oil-in-Water Emulsions. J. Agric. Food Chem. 1996, 44, 2951–2956. [Google Scholar] [CrossRef]
- Johnson, J.J. Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Lett. 2011, 305, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.A.; Charles, H.P. Antimicrobial activity of Carnosol and Ursolic acid: Two anti-oxidant constituents of Rosmarinus officinalis L. Food Microbiol. 1987, 4, 311–315. [Google Scholar] [CrossRef]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts. J. Agric. Food Chem. 2012, 60, 9603–9608. [Google Scholar] [CrossRef]
- Areche, C.; Schmeda-Hirschmann, G.; Theoduloz, C.; Rodríguez, J.A. Gastroprotective effect and cytotoxicity of abietane diterpenes from the Chilean Lamiaceae Sphacele chamaedryoides (Balbis) Briq. J. Pharm. Pharmacol. 2009, 61, 1689–1697. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Lin, K.I.; Lin, C.C.; Kuo, S.M.; Lai, J.C.; Wang, Y.Q.; You, H.L.; Hsu, M.L.; Chen, C.H.; Shiu, L.Y. Carnosic acid impedes cell growth and enhances anticancer effects of carmustine and lomustine in melanoma. Biosci. Rep. 2018, 38, BSR20180005. [Google Scholar] [CrossRef] [PubMed]
- Elebeedy, D.; Elkhatib, W.F.; Kandeil, A.; Ghanem, A.; Kutkat, O.; Alnajjar, R.; Saleh, M.A.; Abd El Maksoud, A.I.; Badawy, I.; Al-Karmalawy, A.A. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Adv. 2021, 11, 29267–29286. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, R.M.; Sajid, M.W.; Qaisrani, T.B.; Atif, M.; Hussain, G.; et al. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef] [Green Version]
- Cornejo, A.; Sandoval, F.A.; Caballero, L.; Machuca, L.; Muñoz, P.; Caballero, J.; Perry, G.; Ardiles, A.; Areche, C.; Melo, F. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2017, 32, 945–953. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wang, Q.; Guo, Q.; Li, P.; Yang, H. A hydrophobic deep eutectic solvents-based integrated method for efficient and green extraction and recovery of natural products from Rosmarinus officinalis leaves, Ginkgo biloba leaves and Salvia miltiorrhiza roots. Food Chem. 2021, 363, 130282. [Google Scholar] [CrossRef]
- Vladimir-Knežević, S.; Perković, M.; Zagajski Kučan, K.; Mervić, M.; Rogošić, M. Green extraction of flavonoids and phenolic acids from elderberry (Sambucus nigra L.) and rosemary (Rosmarinus officinalis L.) using deep eutectic solvents. Chem. Pap. 2022, 76, 341–349. [Google Scholar] [CrossRef]
- Kessler, J.C.; Vieira, V.; Martins, I.M.; Manrique, Y.A.; Ferreira, P.; Calhelha, R.C.; Afonso, A.; Barros, L.; Rodrigues, A.E.; Dias, M.M. Chemical and organoleptic properties of bread enriched with Rosmarinus officinalis L.: The potential of natural extracts obtained through green extraction methodologies as food ingredients. Food Chem. 2022, 384, 132514. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Q.; Hu, W.; Chen, J.; Zhang, R. Labdane and isopimarane diterpenoids from Rosmarinus officinalis solid wastes: MS/MS spectrometric fragmentations and neuroprotective effect. Ind. Crops Prod. 2022, 177, 114441. [Google Scholar] [CrossRef]
Solvent Extraction | Plant Section | Extraction Technique | Compounds Identified | Technique Use | Reference |
---|---|---|---|---|---|
Water | Leaves | Ultrasound | 24 | UHPLC–ESI–QTOF–MS | [22] |
Water | Leaves and Branches | Infusion | 51 | HPLC–ESI–QTOF–MS | [23] |
Methanol | Leaves | Maceration | 47 | UHPLC–MS | [24] |
Methanol | Leaves | Ultrasound | 46 | UHPLC–ESI–QTOF–MS | [22] |
Methanol | Leaves | Ultrasound | 47 | UHPLC–QTOF–MS/MS | [25] |
Methanol | Aerial parts | Maceration | 18 | HPLC–DAD–ESI-Q–MS | [26] |
Aqueous methanol | - | Solid/liquid | 37 | LC–ESI–MS/MS | [27] |
Methanol/water | Leaves | Microwave assisted | 34 | HPLC–ESI–QTOF–MS | [28] |
Methanol and ethanol | Callus | Maceration | 53 | UHPLC–MS | [24] |
Ethanol | Aerial parts | Hydrodistillation- ultrasound | 24 | LC–MS | [29] |
Ethyl acetate | Leaves | Soxhlet | 17 | LC/DAD/ESI–MS | [30] |
Acetone | Leaves | Ultrasound | 57 | UHPLC–ESI–MS | [31] |
CO2 | Leaves | Supercritical fluid | 29 | LC-Q/TOF–MS | [32] |
Peak | Tentative Identification | [M-H]− | λmax (nm) | tR (Min.) | Theorical Mass (m/z) | Measured Mass (m/z) | Accuracy (ppm) | MS2 Ions |
---|---|---|---|---|---|---|---|---|
ORGANIC ACIDS | ||||||||
1 | Quinic acid | C7H11O6- | - | 1.41 | 191.0556 | 191.0555 | 0.5 | 173.0450 |
2 | Hydroxybenzoic acid | C7H5O3- | 210 | 8.81 | 137.0239 | 137.0237 | 1.5 | 109.0285 |
7 | Tuberonic acid glucoside isomer | C18H27O9- | 212, 285 | 9.72 | 387.1655 | 387.1660 | 1.3 | 225.1125 (tuberonic acid) |
9 | Tuberonic acid glucoside | C18H27O9- | 213, 290, 322 | 10.17 | 387.1655 | 387.1659 | 1.0 | 225.1126 (tuberonic acid) |
10 | Benzoic acid * | C7H5O2- | 213, 281 | 10.49 | 121.0290 | 121.0288 | 1.7 | - |
12 | Tuberonic acid * | C12H17O4- | 213, 278 | 10.87 | 225.1127 | 225.1128 | 0.4 | 207.1023 |
UNIDENTIFIED | ||||||||
4 | Unknow | C25H19O7- | 212 | 9.30 | 439.1757 | 439.1739 | 4.1 | - |
5 | Unknow | C23H19O7- | 214–265 | 9.44 | 407.1131 | 407.1113 | 4.4 | - |
CINNAMIC ACID DERIVATIVES | ||||||||
3 | Caffeic acid hexoside | C15H17O9- | 210–326 | 9.16 | 341.0873 | 341.0877 | 1.2 | 179.0343 (caffeic acid); 161.0235; 135.0443 |
6 | Caffeic acid hexoside isomer | C15H17O9- | 212, 290, 322 | 9.51 | 341.0873 | 341.0877 | 1.2 | 179.0343 (caffeic acid); 161.0235 135.0444 |
8 | Chlorogenic acid | C16H17O9- | 213, 310, 324 | 9.81 | 353.0873 | 353.0877 | 1.1 | 191.0549; 179.0350 (caffeic acid); 161.0236; 135.0443 |
17 | Rosmarinic acid isomer | C18H15O8- | 204, 277, 329 | 11.96 | 359.0767 | 359.0772 | 1.4 | 197.0447; 179.0343 (caffeic acid); 161.0237; 133.0287 |
19 | Rosmarinic acid | C18H15O8- | 198, 329 | 12.34 | 359.0767 | 359.0771 | 1.1 | 197.0449; 179.0342 (caffeic acid); 161.0237; 133.0287 |
13 | Methyl dihydro-p-coumaric acid * | C10H11O3- | 212, 278 | 11.06 | 179.0708 | 179.0709 | 0.6 | - |
FLAVONOIDS | ||||||||
11 | Hydroxyluteolin-7-O-glucoside | C21H19O12- | 281, 340 | 10.78 | 463.0877 | 463.0881 | 0.9 | 301.0349 (hydroxyluteolin) |
14 | Luteolin-7-O-glucoside | C21H19O11- | 272, 334 | 11.32 | 447.0927 | 447.0933 | 1.3 | 285.0402 (luteolin) |
15 | Luteolin-3-O-glucuronide | C21H17O12- | 268, 340 | 11.39 | 461.0720 | 461.0724 | 0.9 | 285.0396 (luteolin) |
16 | Nepitrin | C22H21O12- | 273, 342 | 11.50 | 477.1033 | 477.1037 | 0.8 | 315.0508 (nepetin) |
18 | Hispidulin-7-glucoside | C22H21O11- | 277, 331 | 12.05 | 461.1084 | 461.1088 | 0.9 | 299.0556 (hispidulin) |
20 | Feruloylnepitrin | C32H29O15- | 215, 281, 332 | 12.71 | 653.1506 | 653.1501 | 0.8 | 477.1041 (nepitrin); 315.0510 (nepetin) |
21 | Luteolin acetyl-O-glucuronide | C23H19O13- | 281, 326 | 12.85 | 503.0826 | 503.0829 | 0.6 | 285.0402 (luteolin) |
22 | Luteolin acetyl-O-glucuronide I | C23H19O13- | 269, 335 | 13.14 | 503.0826 | 503.0829 | 0.6 | 285.0400 (luteolin) |
23 | Luteolin acetyl-O-glucuronide II | C23H19O13- | 269, 336 | 13.45 | 503.0826 | 503.0829 | 0.6 | 285.0401 (luteolin) |
25 | Luteolin | C15H9O6- | 340 | 14.05 | 285.0399 | 285.0404 | 1.8 | - |
26 | Isorhamnetin | C16H11O7- | 269, 344 | 14.16 | 315.0505 | 315.0509 | 1.3 | 300.0270; 85.0402; |
29 | Pectolinarigenin | C17H13O6- | 285, 328 | 16.24 | 313.0712 | 313.0717 | 1.6 | - |
31 | Apigenin | C15H9O5- | 266, 335 | 16.78 | 269.0450 | 269.0454 | 1.5 | 201.0547; 151.0029 |
32 | Methyl luteolin * | C16H11O6- | 266, 334 | 17.04 | 299.0556 | 299.0560 | 1.3 | 284.0325 |
34 | Methyl isorhamnetin * | C17H13O7- | 274, 340 | 17.90 | 329.0661 | 329.0666 | 1.5 | 299.0194 |
42 | Cirsimaritin | C17H13O6- | 275, 334 | 19.46 | 313.0712 | 313.0716 | 1.3 | - |
48 | Acacetin | C16H11O5- | 270, 329 | 20.43 | 283.0606 | 283.0611 | 1.8 | 268.0372 |
49 | Genkwanin | C16H11O5- | 268, 334 | 20.52 | 283.0606 | 283.0610 | 1.4 | 268.0375 |
TERPENOIDS | ||||||||
24 | Hydroxyrosmanol * | C20H25O6- | - | 13.83 | 361.1651 | 361.1656 | 1.4 | 317.1754 |
27 | Nor-rosmanol * | C19H23O5- | - | 14.83 | 331.1545 | 331.1551 | 1.8 | 287.1651 |
33 | Rosmanol | C20H25O5- | 283 | 17.73 | 345.1702 | 345.1707 | 1.4 | 301.1807 |
35 | Hydroxyrosmadial * | C20H23O6- | - | 18.20 | 359.1495 | 359.1500 | 1.4 | 331.1550; 315.1600; 287.1650 |
37 | Hydroxyepirosmanol * | C20H25O6- | - | 18.41 | 361.1651 | 361.1657 | 1.7 | 317.1757 |
39 | Hydroxycarnosic acid * | C20H27O5- | 283 | 18.84 | 347.1858 | 347.1864 | 1.7 | 303.1962 |
40 | Acetyl hydroxy rosmanol * | C22H27O7- | - | 19.02 | 403.1757 | 403.1762 | 1.2 | 359.1863; 341.1757 |
41 | Acetyl hydroxy rosmanol isomer * | C22H27O7- | - | 19.21 | 403.1757 | 403.1763 | 1.5 | - |
43 | Epirosmanol | C20H25O5- | 283 | 19.54 | 345.1702 | 345.1706 | 1.2 | 301.1808; 283.1700 |
44 | Carnosic acid isomer | C20H27O4- | 216, 281 | 19.92 | 331.1909 | 331.1913 | 1.2 | - |
45 | Epirosmanol isomer I | C20H25O5- | 283 | 20.01 | 345.1702 | 345.1706 | 1.2 | 301.1807; 283.1697 |
46 | Desoxy nor-carnosol * | C19H23O3- | - | 20.25 | 299.1647 | 299.1651 | 1.3 | 255.1599 |
47 | Rosmadial | C20H23O5- | - | 20.35 | 343.1545 | 343.1550 | 1.5 | 315.1605; 299.1650; 287.1648 |
50 | Salvicanaric acid methyl ester * | C20H27O5- | - | 20.65 | 347.1858 | 347.1863 | 1.4 | 329.1758; 287.1649 |
52 | Hydroxyacetylcarnosol * | C22H27O6- | - | 20.80 | 387.1808 | 387.1812 | 1.0 | 343.1913; 283.1707 |
53 | Epirosmanol isomer II | C20H25O5- | - | 20.91 | 345.1702 | 345.1707 | 1.4 | 301.1806; 287.1685 |
54 | Rosmanol isomer I | C20H25O5- | - | 21.18 | 345.1702 | 345.1707 | 1.4 | 301.1808 |
55 | Prenylated dihydroxycarnosic acid * | C25H37O6- | - | 21.25 | 433.2590 | 433.2595 | 1.2 | 317.1757 |
56 | Dihydroxy methylcarnosic acid * | C21H29O6- | - | 21.32 | 377.1964 | 377.1970 | 1.6 | 301.1809; 269.1541 |
57 | Acetoxycarnosic acid * | C22H29O6- | - | 21.49 | 389.1964 | 389.1970 | 1.5 | 345.2068; 303.1969; 285.1862 |
58 | Prenylated dihydroxycarnosic acid derivative isomer | C25H37O6- | - | 21.63 | 433.2590 | 433.2596 | 1.4 | 317.1757 |
59 | Methoxy carnosol | C21H27O5- | 277, 329 | 21.75 | 359.1858 | 359.1864 | 1.7 | 315.1963; 300.1731 |
60 | Salvicanaric acid methyl ester isomer * | C20H27O5- | 281 | 21.95 | 347.1858 | 347.1864 | 1.7 | 329.1758; 287.1651 |
61 | Desoxy nor-carnosol * | C19H23O3- | - | 22.00 | 299.1647 | 299.1646 | 0.3 | - |
62 | Rosmanol isomer II | C20H25O5- | 281 | 22.07 | 345.1702 | 345.1707 | 1.4 | 301.1830 |
63 | Rosmanol methyl ether | C21H27O5- | 218 | 22.14 | 359.1858 | 359.1863 | 1.4 | 283.1698 |
64 | 16-Hydroxy-20-deoxocarnosol * | C20H27O4- | 218 | 22.21 | 331.1909 | 331.1914 | 1.5 | 313.1807 |
65 | Carnosol | C20H25O4- | 208 | 22.29 | 329.1753 | 329.1757 | 1.2 | 285.1858; 201.0917 |
66 | Carnosol isomer I | C20H25O4- | 217 | 22.64 | 329.1753 | 329.1758 | 1.5 | 285.1863; 201.0916 |
67 | Rosmadial isomer I | C20H23O5- | 217, 269, 322 | 22.74 | 343.1545 | 343.1551 | 1.7 | 315.1599; 299.1653; 287.1654 |
68 | Rosmadial isomer II | C20H23O5- | 218 | 23.05 | 343.1545 | 343.1551 | 1.7 | 315.1598; 299.1651 |
69 | Rosmaridiphenol | C20H27O3- | 218 | 23.28 | 315.1960 | 315.1965 | 1.6 | 285.1857 |
70 | 5,6,7,10-tetrahydro-7-hydroxyrosmariquinone | C19H25O3- | 218, 278 | 23.49 | 301.1804 | 301.1809 | 1.7 | 265.1478 |
71 | Carnosic acid | C20H27O4- | 207, 285 | 24.04 | 331.1909 | 331.1913 | 1.2 | 287.2013; 244.1466 |
72 | Methyl carnosate | C21H29O4- | 216 | 25.54 | 345.2066 | 345.2070 | 1.2 | 286.1934 |
73 | Desoxy carnosic acid derivative * | C20H29O3- | 218 | 25.82 | 317.2117 | 317.2120 | 0.9 | - |
74 | Desoxy carnosic acid derivative isomer * | C20H29O3- | 218 | 27.73 | 317.2117 | 317.2120 | 0.9 | - |
75 | Micromeric acid | C30H45O3- | 216 | 28.95 | 453.3369 | 453.3373 | 0.9 | - |
FATTY ACIDS | ||||||||
28 | Trihydroxyoleic acid * | C18H33O5- | - | 16.00 | 329.2328 | 329.2334 | 1.8 | - |
30 | Trihydroxy-octadecadienoic acid * | C18H31O5- | - | 16.53 | 327.2171 | 327.2177 | 1.8 | - |
36 | Trihydroxyoleic acid isomer * | C18H33O5- | - | 18.37 | 329.2328 | 329.2333 | 1.5 | - |
38 | Hydroxyhexadecanedioic acid * | C16H29O5- | - | 18.69 | 301.2015 | 301.2021 | 2.0 | - |
51 | Dihydroxyoctadecadienoic acid * | C18H31O4- | - | 20.74 | 311.2222 | 311.2227 | 1.6 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeta, G.; Cifuentes, N.; Sepulveda, B.; Bárcenas-Pérez, D.; Cheel, J.; Areche, C. Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus. Separations 2022, 9, 327. https://doi.org/10.3390/separations9110327
Castañeta G, Cifuentes N, Sepulveda B, Bárcenas-Pérez D, Cheel J, Areche C. Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus. Separations. 2022; 9(11):327. https://doi.org/10.3390/separations9110327
Chicago/Turabian StyleCastañeta, Grover, Nicolas Cifuentes, Beatriz Sepulveda, Daniela Bárcenas-Pérez, José Cheel, and Carlos Areche. 2022. "Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus" Separations 9, no. 11: 327. https://doi.org/10.3390/separations9110327
APA StyleCastañeta, G., Cifuentes, N., Sepulveda, B., Bárcenas-Pérez, D., Cheel, J., & Areche, C. (2022). Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus. Separations, 9(11), 327. https://doi.org/10.3390/separations9110327