Synthesis and Characterization with Computational Studies of Metal Complexes of Methyl 2-((4-cyanophenyl)(hydroxy) methyl)acrylate: A New Biologically Active Multi-Functional Adduct
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis of Methyl 2-((4-cyanophenyl)(hydroxy)methyl)acrylate MBH Adduct
Analytical Data for L”x (Compound 3)
2.3. Synthesis of Metal Complexes of L”x
2.4. Analytical Data of Transition Metal Complexes
2.4.1. Cr3+L’’x Complex (Compound 4)
2.4.2. Co3+L”x Complex (Compound 5)
2.4.3. Ni2+L”x Complex (Compound 6)
2.4.4. Mn2+L”x Complex (Compound 7)
2.4.5. Cu2+L”x Complex (Compound 8)
2.5. Antibacterial Assay for Compounds 3–8
2.6. Determination of DPPH Radical Scavenging Activity of Compounds 3–8
2.7. Antifungal Assay for Compounds 3–8
2.8. Computational Studies
3. Results and Discussion
3.1. Physical Characteristics and Elemental Analysis
3.2. Electronic Spectroscopy
3.3. Theoratical and Experimental FT-IR of Ligand L”x (Compound 3)
3.4. Experimental FT-IR Spectroscopyof Complexes 4–8
3.5. Mass Spectroscopy
3.6. 1H NMR Spectroscopy
3.7. Molecular Modeling
3.8. X-ray Diffraction
3.9. Thermal Analysis
3.10. Antibacterial Assay
3.11. Antioxidant Activity
3.12. Antifungal Activity
- ΔD = Dc − Dt
- Dc = average diameter of fungal colony in negative control
- Dt = average diameter of fungal colony in experimental plates
3.13. Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basavaiah, D.; Rao, K.V.; Reddy, R.J. The Baylis–Hillman Reaction: A Novel Source of Attraction, Opportunities, and Challenges in Synthetic Chemistry. Chem. Soc. Rev. 2007, 36, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Junior, C.G.L.; De Assis, P.A.C.; Silva, F.P.L.; Sousa, S.C.O.; De Andrade, N.G.; Barbosa, T.P.; Nerís, P.L.N.; Segundo, L.V.G.; Anjos, Í.C.; Carvalho, G.A.U.; et al. Efficient Synthesis of 16 Aromatic Morita-Baylis-Hillman Adducts: Biological Evaluation on Leishmania Amazonensis and Leishmania Chagasi. Bioorg. Chem. 2010, 38, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Sousa, B.A.; Dos Santos, A.A. A Facile, Versatile, and Mild Morita-Baylis-Hillman-Type Reaction for the Modular One-Pot Synthesis of Highly Functionalized MBH Adducts. Eur. J. Org. Chem. 2012, 3431–3436. [Google Scholar] [CrossRef]
- Du, J.; Ma, Y.; Meng, F.; Zhang, R.; Wang, R.; Shi, H.; Wang, Q.; Fan, Y.; Huang, H.; Cui, J.; et al. Lewis Base-Catalyzed [4 + 3] Annulation of Ortho -Quinone Methides and MBH Carbonates: Synthesis of Functionalized Benzo[b]Oxepines Bearing Oxindole ScaffOlds. Org. Lett. 2019, 21, 465–468. [Google Scholar] [CrossRef]
- Ketata, E.; Elleuch, H.; Neifar, A.; Mihoubi, W.; Ayadi, W.; Marrakchi, N.; Rezgui, F.; Gargouri, A. Anti-Melanogenesis Potential of a New Series of Morita-Baylis-Hillman Adducts in B16F10 Melanoma Cell Line. Bioorg. Chem. 2019, 84, 17–23. [Google Scholar] [CrossRef]
- Mohan, R.; Rastogi, N.; Namboothiri, I.N.N.; Mobin, S.M.; Panda, D. Synthesis and Evaluation of α-Hydroxymethylated Conjugated Nitroalkenes for Their Anticancer Activity: Inhibition of Cell Proliferation by Targeting Microtubules. Bioorg. Med. Chem. 2006, 14, 8073–8085. [Google Scholar] [CrossRef] [PubMed]
- Lima-Junior, C.G.; Vasconcellos, M.L.A.A. Morita-Baylis-Hillman Adducts: Biological Activities and Potentialities to the Discovery of New Cheaper Drugs. Bioorg. Med. Chem. 2012, 20, 3954–3971. [Google Scholar] [CrossRef]
- Dadwal, M.; Mohan, R.; Panda, D.; Mobin, S.M.; Namboothiri, I.N.N. The Morita-Baylis-Hillman Adducts of β-Aryl Nitroethylenes with Other Activated Alkenes: Synthesis and Anticancer Activity Studies. Chem. Commun. 2006, 3, 338–340. [Google Scholar] [CrossRef]
- Elleuch, H.; Mihoubi, W.; Mihoubi, M.; Ketata, E.; Gargouri, A.; Rezgui, F. Potential Antioxidant Activity of Morita-Baylis-Hillman Adducts. Bioorg. Chem. 2018, 78, 24–28. [Google Scholar] [CrossRef]
- de Souza, R.O.M.A.; Pereira, V.L.P.; Muzitano, M.F.; Falcão, C.A.B.; Rossi-Bergmann, B.; Filho, E.B.A.; Vasconcellos, M.L.A.A. High Selective Leishmanicidal Activity of 3-Hydroxy-2-Methylene-3-(4-Bromophenyl) Propanenitrile and Analogous Compounds. Eur. J. Med. Chem. 2007, 42, 99–102. [Google Scholar] [CrossRef]
- Amarante, G.W.; Cavallaro, M.; Coelho, F. Hyphenating the Curtius Rearrangement with Morita-Baylis-Hillman Adducts: Synthesis of Biologically Active Acyloins and Vicinal Aminoalcohols. J. Braz. Chem. Soc. 2011, 22, 1568–1584. [Google Scholar] [CrossRef]
- Santos, M.S.; Fernandes, D.C.; Rodrigues, M.T.; Regiani, T.; Andricopulo, A.D.; Ruiz, A.L.T.G.; Vendramini-Costa, D.B.; De Carvalho, J.E.; Eberlin, M.N.; Coelho, F. Diastereoselective Synthesis of Biologically Active Cyclopenta[b]Indoles. J. Org. Chem. 2016, 81, 6626–6639. [Google Scholar] [CrossRef]
- Pirovani, R.V.; Ferreira, B.R.V.; Coelho, F. Highly Functionalized Spirocyclohexadienones from Morita-Baylis-Hillman Adducts. Synlett 2009, 14, 2333–2337. [Google Scholar] [CrossRef]
- Calvo, B.C.; Buter, J.; Minnaard, A.J. Applications to the synthesis of natural products. In Copper-Catalyzed Asymmetric Synthesis; Wiley Online Library: Hoboken, NJ, USA, 2014; Volume 9783527332, pp. 373–448. [Google Scholar] [CrossRef]
- Rabello, A.; Rubinger, M.; Souza, R.; Guilardi, S.; de Lima, G.; Tavares, E.; Zanon, É.; Silva, G.; Zambolim, L.; Ellena, J. Molecular Structure Studies on Allyl Sulfonamides: Synthesis, Theoretical Treatment and Evaluation of Biological Activity. J. Braz. Chem. Soc. 2021, 32, 2033–2046. [Google Scholar] [CrossRef]
- Amarante, G.W.; Cavallaro, M.; Coelho, F. Highly Diastereoselective Total Synthesis of the Anti-Tumoral Agent (±)-Spisulosine (ES285) from a Morita-Baylis-Hillman Adduct. Tetrahedron Lett. 2010, 51, 2597–2599. [Google Scholar] [CrossRef]
- Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Ping Dou, Q. Novel Metals and Metal Complexes as Platforms for Cancer Therapy. Curr. Pharm. Des. 2010, 16, 1813–1825. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M.; Hartinger, C.G. Anticancer Metallodrugs: Where Is the next Cisplatin? Future Med. Chem. 2018, 10, 615–617. [Google Scholar] [CrossRef]
- Narang, R.; Narasimhan, B.; Sharma, S. A Review on Biological Activities and Chemical Synthesis of Hydrazide Derivatives. Curr. Med. Chem. 2012, 19, 569–612. [Google Scholar] [CrossRef]
- Creaven, B.S.; Egan, D.A.; Kavanagh, K.; McCann, M.; Mahon, M.; Noble, A.; Thati, B.; Walsh, M. Synthesis and Antimicrobial Activity of Copper(II) and Silver(I) Complexes of Hydroxynitrocoumarins: X-Ray Crystal Structures of [Cu(Hnc)2(H2O)2] · 2H2O and [Ag(Hnc)] (HncH = 4-Hydroxy-3-Nitro-2H-Chromen-2-One). Polyhedron 2005, 24, 949–957. [Google Scholar] [CrossRef]
- Ahmad, S.; Wang, S.; Wu, W.; Yang, K.; Zhang, Y.F.; Tumukunde, E.; Wang, S.; Wang, Y. Functional Analysis of Peptidyl-Prolyl Cis-Trans Isomerase from Aspergillus Flavus. Int. J. Mol. Sci. 2019, 20, 2206. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.Z.; Ahmad, S.; Wang, S.; Zhang, Y.F.; Yang, H.; Wang, S.H.; Wang, Y. Expression and Antibody Preparation of Small Ubiquitin-like Modifier (SUMO) from Aspergillus Flavus. IOP Conf. Ser. Earth Environ. Sci. 2019, 346. [Google Scholar] [CrossRef]
- Abdi, Y.; Bensouilah, N.; Siziani, D.; Hamdi, M.; Silva, A.M.S.; Boutemeur-Kheddis, B. New Complexes of Manganese (II) and Copper (II) Derived from the Two New Furopyran-3, 4-Dione Ligands: Synthesis, Spectral Characterization, ESR, DFT Studies and Evaluation of Antimicrobial Activity. J. Mol. Struct. 2020, 1202, 127307. [Google Scholar] [CrossRef]
- Zhang, C.; Han, X.; Korshin, G.V.; Kuznetsov, A.M.; Yan, M. Interpretation of the Differential UV–Visible Absorbance Spectra of Metal-NOM Complexes Based on the Quantum Chemical Simulations for the Model Compound Esculetin. Chemosphere 2021, 276, 130043. [Google Scholar] [CrossRef]
- Brito, V.B.M.; Santos, G.F.; Silva, T.D.S.; Souza, J.L.C.; Militão, G.C.G.; Martins, F.T.; Silva, F.P.L.; Oliveira, B.G.; Araújo, E.C.C.; Vasconcellos, M.L.A.A.; et al. Synthesis, Anti-Proliferative Activity, Theoretical and 1H NMR Experimental Studies of Morita–Baylis–Hillman Adducts from Isatin Derivatives. Mol. Divers. 2020, 24, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Sanchez, V.; Simirgiotis, M.J.; Santos, L.S. The Morita-Baylis-Hillman Reaction: Insights into Asymmetry and Reaction Mechanisms by Electrospray Ionization Mass Spectrometry. Molecules 2009, 14, 3989–4021. [Google Scholar] [CrossRef] [Green Version]
- da Câmara Rocha, J.; da Franca Rodrigues, K.A.; do Nascimento Néris, P.L.; da Silva, L.V.; Almeida, F.S.; Lima, V.S.; Peixoto, R.F.; da Câmara Rocha, J.; de Azevedo, F.d.L.A.A.; Veras, R.C.; et al. Biological Activity of Morita-Baylis-Hillman Adduct Homodimers in L. Infantum and L. Amazonensis: Anti-Leishmania Activity and Cytotoxicity. Parasitol. Res. 2019, 118, 3067–3076. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Hills, I.D.; Fu, G.C. The First General Method for the Synthesis of Transition-Metal π Complexes of an Electronically Diverse Family of 1,2-Azaborolyls. Organometallics 2002, 21, 4323–4325. [Google Scholar] [CrossRef]
- Aiyelabola, T.; Akinkunmi, E.; Ojo, I.; Obuotor, E.; Adebajo, C.; Isabirye, D. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine. Bioinorg. Chem. Appl. 2017, 2956145. [Google Scholar] [CrossRef]
- Jeslin Kanaga Inba, P.; Annaraj, B.; Thalamuthu, S.; Neelakantan, M.A. Cu(II), Ni(II), and Zn(II) Complexes of Salan-Type Ligand Containing Ester Groups: Synthesis, Characterization, Electrochemical Properties, and in Vitro Biological Activities. Bioinorg. Chem. Appl. 2013, 2013. [Google Scholar] [CrossRef]
- Kirbag, S.; Erecevit, P.; Zengin, F.; Guvenc, A.N. Antimicrobial Activities of Some Euphorbia Species. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Harmon, K.G.; Clugston, J.R.; Dec, K.; Hainline, B.; Herring, S.; Kane, S.F.; Kontos, A.P.; Leddy, J.J.; McCrea, M.; Poddar, S.K.; et al. American Medical Society for Sports Medicine Position Statement on Concussion in Sport. Br. J. Sports Med. 2019, 53, 213–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, S.; Ikram, M.; Subhan, F.; Sinnokrot, M.; Khan, W. Antibacterial Activities of Transition Metal Complexes of Mesocyclic Amidine 1,4-Diazacycloheptane (DACH). Open Chem. 2019, 17, 936–942. [Google Scholar] [CrossRef]
- Alfredo Rodriguez, V.; Alfredo, V. Formulation of Nanoparticle Systems for Drug Delivery Application in Biomedical Sciences. Master’s Thesis, The University of Texas at El Paso, El Paso, TX, USA, 2018. [Google Scholar]
- Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On Practical Problems in Estimation of Antioxidant Activity of Compounds by DPPH Method (Problems in Estimation of Antioxidant Activity). Food Chem. 2012, 131, 1037–1043. [Google Scholar] [CrossRef]
- Surapuram, V.; Setzer, W.N.; McFeeters, R.L.; McFeeters, H. Antifungal Activity of Plant Extracts against Aspergillus Niger and Rhizopus Stolonifer. Nat. Prod. Commun. 2014, 9, 1603–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Yan, M.; Duan, H.; Bi, Y.; Cheng, X.; Yu, H. Synergistic Antifungal Activity of Green Synthesized Silver Nanoparticles and Epoxiconazole against Setosphaeria Turcica. J. Nanomater. 2020, 9535432. [Google Scholar] [CrossRef] [Green Version]
- Pusnik, M.; Imeri, M.; Deppierraz, G.; Bruinink, A.; Zinn, M. The Agar Diffusion Scratch Assay—A Novel Method to Assess the Bioactive and Cytotoxic Potential of New Materials and Compounds. Sci. Rep. 2016, 6, 20854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. Gaussian 16 2016. Available online: https://gaussian.com/ (accessed on 18 August 2022).
- Ahmed, H.; Hashim, A.; Abduljalil, H. Analysis of Structural, Electrical and Electronic Properties of (Polymer Nanocomposites/Silicon Carbide) for Antibacterial Application. Egypt. J. Chem. 2019, 62, 767–776. [Google Scholar] [CrossRef]
- Becke, A.D. The Effect of the Exchange-Only Gradient Gradient Correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Al-Resayes, S.I.; Alam, M.; Trzesowska-Kruszynska, A.; Kruszynski, R.; Siddiqui, M.R.H. A New Ladder-Type Dichloro(2,2-Dimethyl-1,3-Diaminopropane) Copper Complex: Synthesis, Structural Studies and Selective Sensing Behavior towards a Ketone Molecule. Polyhedron 2019, 170, 287–293. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdgate, G.A.; Tunnicliffe, A.; Ward, W.H.J.; Weston, S.A.; Rosenbrock, G.; Barth, P.T.; Taylor, I.W.F.; Pauptit, R.A.; Timms, D. The Entropic Penalty of Ordered Water Accounts for Weaker Binding of the Antibiotic Novobiocin to a Resistant Mutant of DNA Gyrase: A Thermodynamic and Crystallographic Study. Biochemistry 1997, 36, 9663–9673. [Google Scholar] [CrossRef] [PubMed]
- Bommer, M.; Kunze, C.; Fesseler, J.; Schubert, T.; Diekert, G.; Dobbek, H. Structural Basis for Organohalide Respiration. Science 2014, 346, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Koropatkin, N.M.; Holden, H.M. Structure of CDP-D-Glucose 4, 6-Dehydratase from Salmonella Typhi Complexed with CDP-D-Xylose. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005, 61, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taft, C.A.; Da Silva, V.B. Current Topics in Computer-aided Drug Design. J. Pharm. Sci. 2008, 97, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- El-Halim, H.F.A.; Mohamed, G.G.; El-Dessouky, M.M.I.; Mahmoud, W.H. Ligational Behaviour of Lomefloxacin Drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO 2(VI) Ions: Synthesis, Structural Characterization and Biological Activity Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 82, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Devi, J.; Batra, N. Synthesis, Characterization and Antimicrobial Activities of Mixed Ligand Transition Metal Complexes with Isatin Monohydrazone Schiff Base Ligands and Heterocyclic Nitrogen Base. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Desnoyer, A.N.; Nicolay, A.; Rios, P.; Ziegler, M.S.; Tilley, T.D. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Acc. Chem. Res. 2020, 53, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- Gaber, M.; Khedr, A.M.; Elsharkawy, M. Characterization and Thermal Studies of Nano-Synthesized Mn(II), Co(II), Ni(II) and Cu(II) Complexes with Adipohydrazone Ligand as New Promising Antimicrobial and Antitumor Agents. Appl. Organomet. Chem. 2017, 31, 1–14. [Google Scholar] [CrossRef]
- Köse, D.A. Synthesis and Characterization of Bis(Nicotinamide) m-Hydroxybenzoate Complexes of Co(II), Ni(II), Cu(II), and Zn(II). Russ. J. Inorg. Chem. 2007, 52, 1384–1390. [Google Scholar] [CrossRef]
- Kang, Q.P.; Li, X.Y.; Wang, L.; Zhang, Y.; Dong, W.K. Containing-PMBP N2O2-Donors Transition Metal(II) Complexes: Synthesis, Crystal Structure, Hirshfeld Surface Analyses and Fluorescence Properties. Appl. Organomet. Chem. 2019, 33, e5013. [Google Scholar] [CrossRef]
- Bruijnincx, P.C.; Sadler, P.J. New Trends for Metal Complexes with Anticancer Activity. Curr. Opin. Chem. Biol. 2008, 12, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S. Spectroscopy of Organic Compounds. Dept. Chem. 2006, 66, 1–36. [Google Scholar]
- Shaghaghi, Z. Spectroscopic Properties of Some New Azo–Azomethine Ligands in the Presence of Cu2+, Pb2+, Hg2+, Co2+, Ni2+, Cd2+ and Zn2+ and Their Antioxidant Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Khan, A.; Hussain, I.; Khan, M.A.; Gul, S.; Iqbal, M.; Inayat-Ur-Rahman; Khuda, F. Spectral, XRD, SEM and Biological Properties of New Mononuclear Schiff Base Transition Metal Complexes. Inorg. Chem. Commun. 2013, 35, 104–109. [Google Scholar] [CrossRef]
- Sundaraganesan, N.; Kalaichelvan, S.; Meganathan, C.; Joshua, B.D.; Cornard, J. FT-IR, FT-Raman Spectra and Ab Initio HF and DFT Calculations of 4-N,N′-Dimethylamino Pyridine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Karabacak, M.; Cinar, M.; Kurt, M.; Sundaraganesan, N. Experimental and Theoretical FTIR and FT-Raman Spectroscopic Analysis of 1-Pyrenecarboxylic Acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 114, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Aiyelabola, T.; Akinkunmi, E.; Obuotor, E.; Olawuni, I.; Isabirye, D.; Jordaan, J. Synthesis Characterization and Biological Activities of Coordination Compounds of 4-Hydroxy-3-Nitro-2H-Chromen-2-One and Its Aminoethanoic Acid and Pyrrolidine-2-Carboxylic Acid Mixed Ligand Complexes. Bioinorg. Chem. Appl. 2017, 2017, 6426747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anacona, J.R.; Santaella, J.; Al-shemary, R.K.R.; Amenta, J.; Otero, A.; Ramos, C.; Celis, F. Ceftriaxone-Based Schiff Base Transition Metal(II) Complexes. Synthesis, Characterization, Bacterial Toxicity, and DFT Calculations. Enhanced Antibacterial Activity of a Novel Zn(II) Complex against S. aureus and E. coli. J. Inorg. Biochem. 2021, 223, 111519. [Google Scholar] [CrossRef] [PubMed]
- Manolov, I.; Kostova, I.; Netzeva, T.; Konstantinov, S.; Karaivanova, M. Cytotoxic Activity of Cerium Complexes with Coumarin Derivatives. Molecular Modeling of the Ligands. Arch. der Pharm. Int. J. Pharm. Med. Chem. 2000, 333, 93–98. [Google Scholar] [CrossRef]
- Abdel-Monem, Y.K.; Abou El-Enein, S.A.; El-Sheikh-Amer, M.M. Design of New Metal Complexes of 2-(3-Amino-4,6-Dimethyl-1H-Pyrazolo[3,4-b]Pyridin-1-Yl)Aceto-Hydrazide: Synthesis, Characterization, Modelling and Antioxidant Activity. J. Mol. Struct. 2017, 1127, 386–396. [Google Scholar] [CrossRef]
- Singh, S.K.; Eng, J.; Atanasov, M.; Neese, F. Covalency and Chemical Bonding in Transition Metal Complexes: An Ab Initio Based Ligand Field Perspective. Coord. Chem. Rev. 2017, 344, 2–25. [Google Scholar] [CrossRef]
- Xu, F.; Huang, W.; You, X.Z. Novel Cyano-Bridged Mixed-Valent Copper Complexes Formed by Completely in Situ Synthetic Method via the Cleavage of C-C Bond in Acetonitrile. Dalt. Trans. 2010, 39, 10652–10658. [Google Scholar] [CrossRef] [PubMed]
- Martí-Rujas, J. Structural Elucidation of Microcrystalline MOFs from Powder X-Ray Diffraction. Dalt. Trans. 2020, 49, 13897–13916. [Google Scholar] [CrossRef] [PubMed]
- Tavares, E.C.; Rubinger, M.M.M.; Filho, E.V.; Oliveira, M.R.L.; Piló-Veloso, D.; Ellena, J.; Guilardi, S.; Souza, R.A.C.; Zambolim, L. Tetraphenylphosphonium Allyldithiocarbimates Derived from Morita-Baylis-Hillman Adducts: Synthesis, Characterization, Crystal Structure and Antifungal Activity. J. Mol. Struct. 2016, 1106, 130–140. [Google Scholar] [CrossRef]
- Amarante, G.W.; Milagre, H.M.S.; Vaz, B.G.; Ferreira, B.R.V.; Eberlin, M.N.; Coelho, F. Dualistic Nature of the Mechanism of the Morita-Baylis-Hillman Reaction Probed by Electrospray Ionization Mass Spectrometry. J. Org. Chem. 2009, 74, 3031–3037. [Google Scholar] [CrossRef] [PubMed]
- Szabó, P.T.; Kele, Z. Electrospray Mass Spectrometry of Hydrophobic Compounds Using Dimethyl Sulfoxide and Dimethylformamide as Solvents. Rapid Commun. Mass Spectrom. 2001, 15, 2415–2419. [Google Scholar] [CrossRef]
- Borges, V.; Henion, J. Determination of Pharmaceutical Compounds in Aqueous Dimethyl Sulfoxide by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 415–423. [Google Scholar] [CrossRef]
- Saad, F.A. Synthesis, Spectral, Electrochemical and X-Ray Single Crystal Studies on Ni(II) and Co(II) Complexes Derived from 1-Benzoyl-3-(4-Methylpyridin-2-Yl) Thiourea. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Şahin, Ö.; Özdemir, Ü.Ö.; Seferoğlu, N.; Genc, Z.K.; Kaya, K.; Aydıner, B.; Tekin, S.; Seferoğlu, Z. New Platinum (II) and Palladium (II) Complexes of Coumarin-Thiazole Schiff Base with a Fluorescent Chemosensor Properties: Synthesis, Spectroscopic Characterization, X-Ray Structure Determination, in Vitro Anticancer Activity on Various Human Carcinoma Ce. J. Photochem. Photobiol. B Biol. 2018, 178, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Atalay, V.E.; Ölüç, I.B.; Karahan, M. Modeling of BSA–Metal Ion-Acrylic Acid Complex by Theoretical Methods: Semi-Empirical PM6 and Docking Study. Acta Phys. Pol. A 2018, 134, 1200–1203. [Google Scholar] [CrossRef]
- Pourjavid, M.R.; Sehat, A.A.; Arabieh, M.; Yousefi, S.R.; Hosseini, M.H.; Rezaee, M. Column Solid Phase Extraction and Flame Atomic Absorption Spectrometric Determination of Manganese(II) and Iron(III) Ions in Water, Food and Biological Samples Using 3-(1-Methyl-1H-Pyrrol-2-Yl)-1H-Pyrazole-5-Carboxylic Acid on Synthesized Graphene Oxide. Mater. Sci. Eng. C 2014, 35, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mottaleb, M.S.A.; Ismail, E.H. A Combined Experimental and Modelling Investigations on Mixed Bioligand Complexes of Divalent Cobalt and Copper in β-Cyclodextrin. Appl. Organomet. Chem. 2020, 34, e5280. [Google Scholar] [CrossRef]
- Mahapatra, B.B.; Mishra, R.R.; Sarangi, A.K. Synthesis, Characterisation, XRD, Molecular Modelling and Potential Antibacterial Studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) Complexes with Bidentate Azodye Ligand. J. Saudi Chem. Soc. 2016, 20, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Bouhdada, M.; Amane, M.E.L.; El Hamzaoui, N. Synthesis, Spectroscopic Studies, X-Ray Powder Diffraction Data and Antibacterial Activity of Mixed Transition Metal Complexes with Sulfonate Azo Dye, Sulfamate and Caffeine Ligands. Inorg. Chem. Commun. 2019, 101, 32–39. [Google Scholar] [CrossRef]
- Shukla, K.; Mishra, A.; Sharma, P. Synthesis, Characterization, XRD and EXAFS Studies of Fe(III) Complexes. AIP Conf. Proc. 2019, 2100, 020163. [Google Scholar] [CrossRef]
- Prescimone, A.; Morien, C.; Allan, D.; Schlueter, J.A.; Tozer, S.W.; Manson, J.L.; Parsons, S.; Brechin, E.K.; Hill, S. Pressure-Driven Orbital Reorientations and Coordination-Sphere Reconstructions in [CuF2(H2O)2(Pyz)]. Angew. Chem. 2012, 124, 7608–7612. [Google Scholar] [CrossRef]
- Sinthuja, S.A.; Shaji, Y.C.; Rose, G.L. Synthesis, Characterization and Evaluation of Biological Properties of Transition Metal Chelates with Schiff Base Ligands Derived from Glutaraldehyde with L-Leucine. IJSRST 2018, 4, 587–593. [Google Scholar]
- Sharfalddin, A.A.; Emwas, A.H.; Jaremko, M.; Hussien, M.A. Transition Metal Complexes of 6-Mercaptopurine: Characterization, Theoretical Calculation, DNA-Binding, Molecular Docking, and Anticancer Activity. Appl. Organomet. Chem. 2021, 35, e6041. [Google Scholar] [CrossRef]
- Neha, M.; Biplab, M. TGA Analysis of Transition Metal Complexes Derived from Phenothiazine Ligands Introduction. Int. J. Sci. Eng. Res. 2018, 6, 47–57. [Google Scholar]
- Mohammed Shafeeulla, R.; Krishnamurthy, G.; Bhojynaik, H.S.; Shivarudrappa, H.P.; Shiralgi, Y. Spectral Thermal Cytotoxic and Molecular Docking Studies of N′-2-Hydroxybenzoyl; Pyridine-4-Carbohydrazide Its Complexes. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 332–344. [Google Scholar] [CrossRef]
- Kavitha, B.; Sravanthi, M.; Saritha Reddy, P. DNA Interaction, Docking, Molecular Modelling and Biological Studies of o-Vanillin Derived Schiff Base Metal Complexes. J. Mol. Struct. 2019, 1185, 153–167. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and Characterization of New Cr(III), Fe(III) and Cu(II) Complexes Incorporating Multi-Substituted Aryl Imidazole Ligand: Structural, DFT, DNA Binding, and Biological Implications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117700. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Flieger, M. The [DPPH●/DPPH-H]-HPLC-DAD Method on Tracking the Antioxidant Activity of Pure Antioxidants and Goutweed (Aegopodium podagraria L.) Hydroalcoholic Extracts. Molecules 2020, 25, 6005. [Google Scholar] [CrossRef]
- Ortiz, R.; Antilén, M.; Speisky, H.; Aliaga, M.E.; López-Alarcón, C.; Baugh, S. Application of a Microplate-Based Orac-Pyrogallol Red Assay for the Estimation of Antioxidant Capacity: First Action 2012.03. J. AOAC Int. 2012, 95, 1558–1561. [Google Scholar] [CrossRef]
- Tsai, C.E.; Lin, L.H. DPPH Scavenging Capacity of Extracts from Camellia Seed Dregs Using Polyol Compounds as Solvents. Heliyon 2019, 5, e02315. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, I. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
Compounds | Molecular Formula | M. Wt (g/mol) | Color | M.P (°C) | Elemental Analysis (%) Calc. (Found) | ||
---|---|---|---|---|---|---|---|
C | H | N | |||||
L”x | C12H11NO3 | 217.07 | Milky white | 120.5–123.4 | 66.35 (66.36) | 5.10 (4.93) | 6.45 (6.48) |
Cr3+L”x | C24H26CrN2O83+ | 558.50 | Sky blue | >300 | 51.61 (51.58) | 5.41 (4.89) | 5.02 (5.10) |
Co3+L”x | C24H26CoN2O83+ | 565.43 | Teal blue | >300 | 50.98 (50.80) | 5.35 (5.54) | 4.95 (4.78) |
Ni2+L”x | C24H22N2NiO62+ | 529.16 | Cadet blue | >300 | 54.47 (54.50) | 4.95 (4.87) | 5.29 (4.94) |
Mn2+L”x | C24H26MnN2O82+ | 561.13 | Wine red | >300 | 54.86 (54.45) | 4.99 (4.41) | 5.33 (5.03) |
Cu2+L”x | C24H22CuN2O62+ | 533.06 | Hunter green | >300 | 53.98 (54.02) | 4.91 (4.95) | 4.99 (5.31) |
Samples | Concentration 1 × 10−3 (M) | Observed λmax (nm) | ε (mol−1cm−1L) | Absorbance (A) |
---|---|---|---|---|
L”x | 1.049 | 251, 265, 269 | 762.63 (269 nm) | 0.65, 0.54, 0.80 |
Cr3+L”x | 1.050 | 256.5, 275, 371 | 238.10 (371 nm) | 2.8, 1.538, 0.25 |
Co3+L”x | 1.048 | 256.5, 275, 361 | 224.24 (361 nm) | 2.949, 1.453, 0.235 |
Ni2+L”x | 1.049 | 254.5, 271.5, 360 | 309.81 (360 nm) | 3.656, 1.741, 0.325 |
Mn2+L”x | 1.050 | 265, 292, 372 | 168.57 (372 nm) | 0.266, 0.214, 0.177 |
Cu2+L”x | 1.049 | 264, 291, 371 | 120.11 (371 nm) | 0.367, 0.207, 0.126 |
Functional Groups | L”x | Calc. L”x | Cr3+L”x | Co3+L”x | Ni2+L”x | Mn2+L”x | Cu2+L”x |
---|---|---|---|---|---|---|---|
ῡ(-OH) | 3437 | 3524 | 3450–3380 | 3500–3350 | 3550–3450 | 3450–3350 | 3500–3470 |
ῡ(=C-H) | 2954 | 3221 | 2850 | 2900 | 2950 | 2954 | 2900 |
ῡ(sp3 C-H stretch), | 3000 | 3046 | 2900–2800 | 2850 | 2850 | 2875 | 2875 |
ῡ(-C≡N) | 2229 | 2264 | 2374 | 2210 | - | 2229 | - |
ῡ(ester C=O), | 1718 | 1687 | - | - | 1640 | - | - |
ῡ(aromatic C=C), | 1629 | 1635 | 1608 | 1635 | 1625 | 1625 | 1673 |
ῡC=C | 1600 | 1635 | 1630 | 1571 | - | 1568 | 1604 |
ῡ(-CH3) | 1440 | 1490 | 1556 | 1450 | - | 1436 | 1400 |
ῡ(C-O) | 1247 | 1201, 1274 | 1390 | 1396 | 1388 | 1390 | 1388 |
ῡ(C-OCH3) | 1151 | 1121 | 1120 | 1107 | 1112 | 1107 | 1111 |
ῡ(-OH bend) | 1053 | 1023, 570 | - | - | - | - | |
ῡ(=C-H aromatic) | 825 | 845, 900 | 700 | - | - | 833 | - |
ῡ(M-O) | - | 607 | 653 | 605 | 613 | 603 | |
ῡ(M-OH2) | - | 550 | 535 | 520 | 525 | 527 |
Complexes | S. Group (G. No.) | Volume (10−6 pm3) | Density (g/cm3) | Unit Cell Dimensions (Å) | Crystal Class | No. of Unit Cells (Z) | Reference Intensity Ratio (RIR) |
---|---|---|---|---|---|---|---|
CrL”x | Pm-3n (223) | 93.82 | 6.09 | a = b = c a = 2.8787 b = 2.8787 c = 2.8787 | Cubic α = β = γ = 90° | 2 | 6.39 |
CoL”x | Pm-3n (223) | 93.82 | 6.09 | a = b = c a = 4.5440 b = 4.5440 c = 4.5440 | Cubic α = β = γ = 90° | 2 | 6.39 |
NiL”x | P6322 (182) | 79.31 | 7.96 | a = b ≠ c a = 4.6160 b = 4.6160 c = 4.2980 | Hexagonal α = β = 90° γ = 120 | 2 | 6.40 |
MnL”x | Pnma (62) | 119.62 | 4.83 | a ≠ b ≠ c a = 9.2660 b = 2.8607 c = 4.5128 | Orthorhombic α = β = γ = 90° | 4 | 3.46 |
CuL”x | C2/c (15) | 82.14 | 6.43 | a ≠ b ≠ c a = 4.6890 b = 3.4200 c = 5.1300 | Monoclinic α = γ = 90° β ≠ 90° | 4 | 3.69 |
Complexes | Miller Indices | d [Å] | 2°θ | Intensity (%) | FWHMI (β) | S (nm) | ||
---|---|---|---|---|---|---|---|---|
h | k | l | ||||||
[Cr(L”x)2(H2O)4]Cl3 | 1 | 1 | 0 | 2.03 | 44.6 | 100 | 0.3444 | 5.9055 |
2 | 0 | 0 | 1.44 | 64.678 | 17 | |||
2 | 1 | 1 | 1.17 | 82.352 | 30 | |||
2 | 2 | 0 | 0.91 | 115.66 | 3 | |||
[Co(L”x)2(H2O)4]Cl3 | 1 | 0 | 0 | 2.3027 | 39.086 | 33.9 | 0.246 | 8.256 |
0 | 0 | 2 | 2.167 | 41.644 | 32 | |||
1 | 0 | 1 | 2.0335 | 44.518 | 100 | |||
1 | 0 | 2 | 1.5781 | 58.434 | 6 | |||
[Ni(L”x)2(H2O)2]Cl2 | 1 | 1 | 0 | 2.308 | 38.993 | 18.8 | 0.2952 | 6.8805 |
1 | 1 | 1 | 2.0333 | 44.522 | 100 | |||
1 | 1 | 2 | 1.572 | 58.651 | 14.7 | |||
3 | 0 | 0 | 1.3325 | 70.631 | 11.5 | |||
[Mn(L”x)2(H2O)2]Cl2 | 1 | 0 | 1 | 4.507 | 21.89 | 100 | 0.3444 | 4.5316 |
3 | 0 | 1 | 2.5459 | 35.179 | 38 | |||
2 | 1 | 0 | 2.434 | 36.9 | 29 | |||
1 | 1 | 1 | 2.338 | 38.473 | 31 | |||
[Cu(L”x)2(H2O)2]Cl2 | −1 | 1 | 1 | 2.5438 | 35.253 | 100 | 0.246 | 7.389 |
0 | 0 | 2 | 2.5244 | 35.533 | 34.2 | |||
1 | 1 | 1 | 2.334 | 58.538 | 81.3 | |||
−1 | 1 | 2 | 2.308 | 38.989 | 28.3 |
Ligand/Complexes | S. aureus (%) | E. coli (%) | B. pumilis (%) | S. typhi (%) |
---|---|---|---|---|
L”x | (-ve) | 83.3 | 70.3 | 83.3 |
CrL”x | (-ve) | 33.1 | 37 | 54.1 |
CoL”x | 57.14 | 85 | 51.8 | 50 |
NiL”x | 71.4 | 75 | 51.8 | 55 |
MnL”x | (-ve) | (-ve) | (-ve) | (-ve) |
CuL”x | (-ve) | (-ve) | (-ve) | (-ve) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishfaq, S.; Nisar, S.; Qayum, A.; Iqbal, S.; Fatima, N.; Alasmary, F.A.; Almalki, A.S.; El Din, E.M.T.; Javed, M.S.; Bocchetta, P. Synthesis and Characterization with Computational Studies of Metal Complexes of Methyl 2-((4-cyanophenyl)(hydroxy) methyl)acrylate: A New Biologically Active Multi-Functional Adduct. Separations 2022, 9, 306. https://doi.org/10.3390/separations9100306
Ishfaq S, Nisar S, Qayum A, Iqbal S, Fatima N, Alasmary FA, Almalki AS, El Din EMT, Javed MS, Bocchetta P. Synthesis and Characterization with Computational Studies of Metal Complexes of Methyl 2-((4-cyanophenyl)(hydroxy) methyl)acrylate: A New Biologically Active Multi-Functional Adduct. Separations. 2022; 9(10):306. https://doi.org/10.3390/separations9100306
Chicago/Turabian StyleIshfaq, Shazia, Shazia Nisar, Amtul Qayum, Sadaf Iqbal, Nasreen Fatima, Fatmah Ali Alasmary, Amani Salem Almalki, ElSayed M. Tag El Din, Muhammad Sufyan Javed, and Patrizia Bocchetta. 2022. "Synthesis and Characterization with Computational Studies of Metal Complexes of Methyl 2-((4-cyanophenyl)(hydroxy) methyl)acrylate: A New Biologically Active Multi-Functional Adduct" Separations 9, no. 10: 306. https://doi.org/10.3390/separations9100306
APA StyleIshfaq, S., Nisar, S., Qayum, A., Iqbal, S., Fatima, N., Alasmary, F. A., Almalki, A. S., El Din, E. M. T., Javed, M. S., & Bocchetta, P. (2022). Synthesis and Characterization with Computational Studies of Metal Complexes of Methyl 2-((4-cyanophenyl)(hydroxy) methyl)acrylate: A New Biologically Active Multi-Functional Adduct. Separations, 9(10), 306. https://doi.org/10.3390/separations9100306