Recent Applications of Solid Phase Microextraction Coupled to Liquid Chromatography
Abstract
:1. Introduction
2. Applications
2.1. Biological
2.1.1. Fluids and Tissues
2.1.2. In Vivo Sampling
2.1.3. Metabolomic
2.1.4. Partitioning Studies
2.2. Food
2.3. Environmental
2.4. Technical Improvements
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fiber. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Moliner-Martinez, Y.; Herráez-Hernández, R.; Verdú-Andrés, J.; Molins-Legua, C.; Campíns-Falcó, P. Recent advances of in-tube solid-phase microextraction. Trends Anal. Chem. 2015, 71, 205–213. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.B.; Li, K.Y.; Cao, Y.Q.; Wu, S.; Wu, L. Advances in different configurations of solid-phase microextraction and their applications in food and environmental analysis. Trends Anal. Chem. 2015, 72, 141–152. [Google Scholar] [CrossRef]
- Seidi, S.; Tajik, M.; Baharfar, M.; Rezazadeh, M. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. Trends Anal. Chem. 2019, 118, 810–827. [Google Scholar] [CrossRef]
- Bagheri, H.; Piri-Moghadam, H. Recent advances in capillary microextraction. Trends Anal. Chem. 2015, 73, 64–80. [Google Scholar] [CrossRef]
- Ozturk, E.E.; Bozyigit, G.D.; Buyukpınar, C.; Bakırdere, S. Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit. Rev. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Gionfriddo, E.; Souza-Silva, E.A.; Pawliszyn, J. Headspace versus Direct Immersion Solid Phase Microextraction in Complex Matrixes: Investigation of Analyte Behavior in Multicomponent Mixtures. Anal. Chem. 2015, 87, 8448–8456. [Google Scholar] [CrossRef] [Green Version]
- Zambonin, C.G. Coupling solid-phase microextraction to liquid chromatography: A review. Anal. Bioanal. Chem. 2003, 375, 73–80. [Google Scholar] [CrossRef]
- Lord, H.L. Strategies for interfacing solid-phase microextraction with liquid chromatography. J. Chromatogr. A 2007, 1152, 2–13. [Google Scholar] [CrossRef]
- Souza-Silva, E.A.; Jiang, R.; Rodríguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Anal. Chem. 2015, 71, 224–235. [Google Scholar] [CrossRef]
- Souza-Silva, E.A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. Trends Anal. Chem. 2015, 71, 236–248. [Google Scholar] [CrossRef]
- Souza-Silva, E.A.; Reyes-Garcés, N.; Gómez-Ríos, G.A.; Boyaci, E.; Bojko, B.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends Anal. Chem. 2015, 71, 249–264. [Google Scholar] [CrossRef]
- Santos, B.; Simonet, B.M.; Ríos, A.; Valcárcel, M. On-line coupling of solid-phase microextraction to commercial CE-MS equipment. Electrophoresis 2007, 28, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, X.Q.; Chen, Y.J.; Lian, H.Z.; Hu, X.; A sequential, P. solid phase microextraction system coupled with inductively coupled plasma mass spectrometry for speciation of inorganic arsenic. Anal. Methods 2014, 6, 4205–4211. [Google Scholar] [CrossRef]
- Zheng, C.; Hu, L.; Hou, X.; He, B.; Jiang, G. Headspace Solid-Phase Microextraction Coupled to Miniaturized Microplasma Optical Emission Spectrometry for Detection of Mercury and Lead. Anal. Chem. 2018, 90, 3683–3691. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, J.; Tian, J.; Zhu, F.; Zeng, F.; Su, C.; Ouyang, G. New materials in solid-phase microextraction. Trends Anal. Chem. 2013, 47, 68–83. [Google Scholar] [CrossRef]
- Yin, L.; Xu, J.; Huang, Z.; Chen, G.; Zheng, J.; Ouyang, G. Solid-Phase Microextraction Fibers Based on Novel Materials: Preparation and Application. Prog. Chem. 2017, 29, 1127–1141. [Google Scholar]
- Piri-Moghadam, H.; Alam, M.N.; Pawliszyn, J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal. Chim. Acta 2017, 984, 42–65. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, B.; Zohrabi, P.; Shamsipur, M. Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 2018, 187, 337–347. [Google Scholar] [CrossRef]
- Lashgari, M.; Yamini, Y. An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 2019, 191, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Khaled Nazal, M.; Rutkowska, M.; Szczepańska, N.; Namieśnik, J.; Płotka-Wasylka, J. Solid Phase Microextraction: Apparatus, Sorbent Materials, and Application. Crit. Rev. Anal. Chem. 2019, 49, 271–288. [Google Scholar] [CrossRef]
- Guo, J.; Park, S.J.; Meng, L.Y.; Jin, X. Applications of carbon-based materials in solid phase micro-extraction: A review. Carbon Lett. 2017, 24, 10–17. [Google Scholar]
- Rocío-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?–A review. Anal. Chim. Acta 2016, 939, 26–41. [Google Scholar] [CrossRef]
- Li, G.; Row, K.H. Recent Applications of Molecularly Imprinted Polymers (MIPs) on Micro-extraction Techniques. Sep. Purif. Rev. 2018, 47, 1–18. [Google Scholar] [CrossRef]
- Yu, H.; Ho, T.D.; Anderson, J.L. Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. Trends Anal. Chem. 2013, 45, 219–232. [Google Scholar] [CrossRef]
- Patinha, D.J.S.; Silvestre, A.J.D.; Marrucho, I.M. Poly (ionic liquids) in solid phase microextraction: Recent advances and perspectives. Prog. Polym. Sci. 2019, 98, 101148. [Google Scholar] [CrossRef]
- Yavir, K.; Konieczna, K.; Marcinkowski, L.; Kloskowski, A. Ionic liquids in the microextraction techniques: The influence of ILs structure and properties. Trends Anal. Chem. 2020, 45, 219–232. [Google Scholar]
- McLean, M.; Malik, A. Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 311–329. [Google Scholar]
- Kabir, A.; Furton, K.G.; Malik, A. Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. Trends Anal. Chem. 2013, 45, 197–218. [Google Scholar] [CrossRef]
- Murtada, K. Trends in nanomaterial-based solid-phase microextraction with a focus on environmental applications—A review. Trends Envrion. Anal. 2020, 25, 00077. [Google Scholar] [CrossRef]
- Zambonin, C.; Aresta, A.; Palmisano, F. Determination of the immunosuppressant mycophenolic acid in human serum by solid-phase microextraction coupled to liquid chromatography. J. Chromatogr. B 2004, 806, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Bojko, B.; Vuckovic, D.; Cudjoe, E.; Hoque, E.; Mirnaghi, F.; Wasowicz, M.; Jerath, A.; Pawliszyn, J. Determination of tranexamic acid concentration by solid phase microextraction and liquid chromatography–tandem mass spectrometry: First step to in vivo analysis. J. Chromatog. B 2011, 879, 3781–3787. [Google Scholar] [CrossRef] [PubMed]
- Dua, W.; Zhang, S.; Fua, Q.; Zhao, G.; Changa, C. Combined solid-phase microextraction and high-performance liquid chromatography with ultroviolet detection for simultaneous analysis of clenbuterol, salbutamol and ractopamine in pig samples. Biomed. Chromatogr. 2013, 27, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- González, J.L.; Pell, A.; López-Mesas, M.; Valiente, M. Simultaneous determination of BTEX and their metabolites using solid-phase microextraction followed by HPLC or GC/MS: An application in teeth as environ mental biomarkers. Sci. Total Environ. 2017, 603–604, 109–117. [Google Scholar] [CrossRef]
- Szultka-Mlynska, M.; Pomastowski, P.L.; Buszewski, B. Application of solid phase microextraction followed by liquid chromatography-mass spectrometry in the determination of antibiotic drugs and their metabolites in human whole blood and tissue samples. J. Chromatogr. B 2018, 1086, 153–165. [Google Scholar] [CrossRef]
- Wang, C.H.; Su, H.; Chou, J.H.; Huang, M.Z.; Lin, H.J.; Shiea, J. Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays. Anal. Chim. Acta 2018, 1021, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Majda, A.; Mrochem, K.; Wietecha-Posłusznya, R.; Zapotoczny, S.; Zawadzk, M. Fast and efficient analyses of the post-mortem human blood and bone marrow using DI-SPME/LC-TOFMS method for forensic medicine purposes. Talanta 2020, 209, 120533. [Google Scholar] [CrossRef]
- Togunde, O.P.; Oakes, K.D.; Servos, M.R.; Pawliszyn, J. Determination of Pharmaceutical Residues in Fish Bile by Solid-Phase Microextraction Couple with Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS). Environ. Sci. Technol. 2012, 46, 5302–5309. [Google Scholar] [CrossRef] [PubMed]
- Togunde, O.P.; Oakes, K.; Servos, M.; Pawliszyn, J. Study of kinetic desorption rate constant in fish muscle and agarose gel model using solid phase microextraction coupled with liquid chromatography with tandem mass spectrometry. Anal. Chim. Acta 2012, 742, 2–9. [Google Scholar] [CrossRef]
- Togunde, O.P.; Lord, H.; Oakes, K.D.; Servos, M.R.; Pawliszyn, J. Development and evaluation of a new in vivo solid-phase microextraction sampler. J. Sep. Sci. 2013, 36, 219–223. [Google Scholar] [CrossRef]
- Bessonneau, V.; Bojko, B.; Pawliszyn, J. In situ chemical exploration of underwater ecosystems with microsampling/enrichment device. J. Chromatogr. A 2014, 1328, 113–117. [Google Scholar] [CrossRef]
- Yeung, J.C.Y.; Vuckovic, D.; Pawliszyn, J. Comparison and validation of calibration methods for in vivo SPME determinations using an artificial vein system. Anal. Chim. Acta 2010, 665, 160–166. [Google Scholar] [CrossRef]
- Yeung, J.C.Y.; de Lannoy, I.; Gien, B.; Vuckovic, D.; Yang, Y.; Bojko, B.; Pawliszyn, J. Semi-automated in vivo solid-phase microextraction sampling and the diffusion-based interface calibration model to determine the pharmacokinetics of methoxyfenoterol and fenoterol in rats. Anal. Chim. Acta 2012, 742, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lord, H.; Zhang, X.; Musteata, F.M.; Vuckovic, D.; Pawliszyn, J. In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat. Protoc. 2011, 6, 896–924. [Google Scholar] [CrossRef]
- Vuckovic, D.; de Lannoy, I.; Gien, B.; Yang, Y.; Musteata, F.M.; Shirey, R.; Sidisky, L.; Pawliszyn, J. In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10,11-epoxide in mice. J. Chromatogr. A 2011, 1218, 3367–3375. [Google Scholar] [CrossRef] [PubMed]
- Bessonneau, V.; Zhan, Y.; De Lannoy, I.A.M.; Saldivia, V.; Pawliszyn, J. In vivo solid-phase microextraction liquid chromatography–tandem mass spectrometry for monitoring blood eicosanoids time profile after lipopolysaccharide-induced inflammation in Sprague-Dawley rats. J. Chromatogr. A 2015, 1424, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, A.; Tascon, M.; Bojko, B.; Goryński, K.; dos Santos, P.R.; Cypel, M.; Pawliszyn, J. Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue. Talanta 2018, 183, 304–310. [Google Scholar] [CrossRef]
- Vuckovic, D.; de Lannoy, I.; Gien, B.; Shirey, Y.R.; Sidisky, L.; Dutta, S.; Pawliszyn, J. In Vivo Solid-Phase Microextraction: Capturing the Elusive Portion of Metabolome. Angew. Chem. 2011, 50, 5344–5348. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, A.; Yu, M.; Bessonneau, V.; Bragg, L.; Servos, M.; Pawliszyn, J. Tissue storage affects lipidome profiling in comparison to in vivo microsampling approach. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Roszkowska, A.; Yu, M.; Bessonneau, V.; Bragg, L.; Servos, M.; Pawliszyn, J. Metabolome Profiling of Fish Muscle Tissue Exposed to Benzoapyrene Using in Vivo Solid-Phase Microextraction. Envrion. Sci. Technol. Lett. 2018, 5, 431–435. [Google Scholar] [CrossRef]
- Napylov, A.; Reyes-Garces, N.; Gomez-Rios, G.; Olkowicz, M.; Lendor, S.; Monnin, C.; Bojko, B.; Hamani, C.; Pawliszyn, J.; Vuckovic, D. In Vivo Solid-Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew. Chem. 2020, 59, 2392–2398. [Google Scholar] [CrossRef]
- Vuckovic, D.; Pawliszyn, J. Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography−Mass spectrometry. Anal. Chem. 2011, 83, 1944–1954. [Google Scholar] [CrossRef] [PubMed]
- Garwolinska, D.; Hewelt-Belka, W.; Namiesnik, J.; Kot-Wasik, A. Rapid characterization of the human breast milk lipidome using a solid-phase microextraction and liquid chromatography–Mass spectrometry-based approach. J. Proteome Res. 2017, 16, 3200–3208. [Google Scholar] [CrossRef] [PubMed]
- Acquaro Junior, V.R.; Pereira Rodrigues, J.; Beraldo Moraes, L.A. Solid phase microextraction as a powerful alternative for screening of secondary metabolites in actinomycetes. J. Mass Spectrom. 2019, 54, 823–833. [Google Scholar] [CrossRef]
- Broeders, J.J.W.; Blaauboer, B.J.; Hermens, J.L.M. Development of a negligible depletion-solid phase microextraction method to determine the free concentration of chlorpromazine in aqueous samples containing albumin. J. Chromatogr. A 2011, 1218, 8529–8535. [Google Scholar] [CrossRef]
- Bojko, B.; Vuckovic, D.; Pawliszyn, J. Comparison of solid phase microextraction versus spectroscopic techniques for binding studies of carbamazepine. J. Pharm. Biomed. Anal. 2012, 66, 91–99. [Google Scholar] [CrossRef]
- Henneberger, L.; Mühlenbrink, M.; Fischer, F.C.; Escher, B.I. C18-Coated Solid-Phase Microextraction Fibers for the Quantification of Partitioning of Organic Acids to Proteins, Lipids, and Cells. Chem. Res. Toxicol. 2019, 32, 168–178. [Google Scholar] [CrossRef]
- Blasco, C.; Vazquez-Roig, P.; Onghena, M.; Masia, A.; Picò, Y. Analysis of insecticides in honey by liquid chromatography–ion trap-mass spectrometry: Comparison of different extraction procedures. J. Chromatogr. A 2011, 1218, 4892–4901. [Google Scholar] [CrossRef]
- Filho, A.M.; dos Santos, F.N.; de Paula Pereira, P.A. Multi-residue analysis of pesticide residues in mangoes using solid-phase microextraction coupled to liquid chromatography and UV–Vis detection. J. Sep. Sci. 2011, 34, 2960–2966. [Google Scholar] [CrossRef] [PubMed]
- Bordagaray, A.; García-Arrona, R.; Millan, E. Development and application of a screening method for triazole fungicide determination in liquid and fruit samples using solid-phase microextraction and HPLC-DAD. Anal. Methods 2013, 5, 2565–2571. [Google Scholar] [CrossRef]
- Aresta, A.; Zambonin, C. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD. J. Pharm. Biomed. Anal. 2016, 121, 63–68. [Google Scholar] [CrossRef]
- Aresta, A.; Di Grumo, F.; Zambonin, C. Determination of major isoflavones in soy drinks by solid-phase micro extraction coupled to liquid chromatography. Food Anal. Methods 2016, 9, 925–933. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; Massari, F.; Zambonin, C. Determination of trans-resveratrol in wines, spirits and grape juices using solid-phase micro extraction coupled to liquid chromatography with UV diode array detection. Food Anal. Methods 2018, 11, 426–431. [Google Scholar] [CrossRef]
- Unceta, N.; Sampedro, M.C.; Abu Bakarb, N.K.; Gómez-Caballeroa, A.; Aránzazu Goicoleaa, M.; Barrioa, R.J. Multi-residue analysis of pharmaceutical compounds in wastewaters by dual solid-phase microextraction coupled to liquid chromatography electrospray ionization ion trap mass spectrometry. J. Chromatog. A 2010, 1217, 3392–3399. [Google Scholar] [CrossRef]
- Aresta, A.; Bianchi, D.; Calvano, C.D.; Zambonin, C.G. Solid phase microextraction-liquid chromatography determination of chloramphenicol in urine and environmental water samples. J. Pharm. Biomed. Anal. 2010, 53, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Oakes, K.D.; Luong, D.; Metcalfe, C.D.; Servos, M.R. Solid-Phase Microextraction Coupled to LC-ESI-MS/MS: Evaluation and correction for matrix-induced ionization suppression/enhancement for pharmaceutical analysis in biological and environmental samples. Anal. Chem. 2011, 83, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.Y.; Chang, M.S.; Yang, S.H.; Wu, G.J. Simultaneous and rapid determination of triclosan, triclocarban and their four related transformation products in water samples using SPME-HPLC-DAD. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2280–2293. [Google Scholar] [CrossRef]
- Santos, D.M.; Williams, M.; Kookana, R.; de Marchi, M.R.R. Solid Phase Microextraction (SPME) Fibers: In situ measurements of endocrine disrupting chemicals in seawater. J. Braz. Chem. Soc. 2018, 29, 888–894. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, X.; Zhu, J.; Li, L.; Zhang, X.; Xiang, M.; Ma, R.; Yu, L.; Yu, Z.; Wang, Z. Rapid and simultaneous analysis of tetrabromobisphenol A and hexabromocyclododecane in water by direct immersion solid phase microextraction: Uniform design to explore factors. Ecotox. Environ. Safe. 2019, 176, 364–369. [Google Scholar] [CrossRef]
- Aresta, A.; De Vietro, N.; Zambonin, C. Ultra-trace determination of sudan I-IV in waste waters by solid-phase microextraction or on-line solid-phase extraction followed by high performance liquid chromatography. Anal. Lett. 2020, 53, 2559–2570. [Google Scholar] [CrossRef]
- Yang, T.J.; Lee, M.R. Electrically assisted solid-phase microextraction combined with liquid chromatography–mass spectrometry for determination of parathion in water. Talanta 2010, 82, 766–770. [Google Scholar] [CrossRef]
- Alves, C.; de Lima Gomes, P.C.F.; dos Santos-Neto, A.J.; Rodrigues, J.C.; Lanças, F.M. Determination of anticonvulsants in human plasma using SPME in a heated interface coupled online to liquid chromatography (SPME-LC). Anal. Methods 2012, 4, 1519–1524. [Google Scholar] [CrossRef]
- Chen, Y.; Sidisky, L.M. Improvement of solid phase microextraction fiber assembly and interface for liquid chromatography. Anal. Chim. Acta 2012, 743, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Boyacı, E.; Kim, J.; Seale, B.; Barrera-Arbelaez, L.; Pawliszyn, J.; Wheeler, A.R. A digital microfluidic interface between solid-phase microextractionand liquid chromatography–mass spectrometry. J. Chromatogr. A 2016, 1444, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Looby, N.T.; Tascon, M.; Acquaro, V.R.; Reyes-Garcés, N.; Vasiljevic, T.; Gomez-Rios, G.A.; Wąsowicz, M.; Pawliszyn, J. Solid phase microextraction coupled to mass spectrometry via a microfluidic open interface for rapid therapeutic drug monitoring. Analyst 2019, 144, 3721–3728. [Google Scholar] [CrossRef]
- Kayali-Sayadi, M.N.; Polo-Díez, L.M.; Rios-Acevedo, J.J. On-line HPLC/SPME Interface using dynamic extraction. J. Phys. Conf. Ser. 2020, 1541, 012009. [Google Scholar] [CrossRef]
Application | Analyte | Matrix | Coating | Desorption | Detector | LOQ | Ref |
Fluids and tissues | tranexamic acid | human plasma | C18 | off-line | MS/MS, QqQ | 1.5 µg/mL | [32] |
β2-agonists | pig tissues | PDMS/DVB | on-line | UV | 0.2–0.5 µg/L | [33] | |
BTEX | human teeth | CAR-PDMS and PA | off-line | UV/DAD | - | [34] | |
antibiotics | human blood/tissue | C18 | off-line | MS/MS, QqQ | 0.085–0.135 µg/mL | [35] | |
methylphenidate | human plasma | PDMS | on-line thermal | direct TD-ESI/MS | below 0.2 ng/mL | [36] | |
psychotropic drugs | human blood/bone marrow | C18 | off-line | MS/MS, QqTOF | 5.60–42.80 ng/mL | [37] | |
In vivo | psychotropic drugs | fishes bile | PDMS | off-line | MS/MS | - | [38] |
psychotropic drugs | trout muscle | PDMS | off-line | MS/MS, Qtrap | 0.40–0.97 (ng/g) | [39] | |
psychotropic drugs | trout muscle | PDMS | off-line | MS/MS | 0.40 0.97 ng/g | [40] | |
untargeted | coral | mixed-mode | off-line | MS/MS, Orbitrap | - | [41] | |
fenoterol | for future in-vein studies | reverse phase amide | off-line | MS/MS, QqQ | - | [42] | |
fenoterol and methoxyfenoterol | rats blood | reverse phase amide | off-line | MS/MS, QqQ | 1 ng/mL | [43] | |
benzodiazepines | beagles blood | polypyrrole wire | off-line | MS/MS | - | [44] | |
carbamazepine and metabolite | mouse blood | C18 | off-line | MS/MS, QqQ | 1 ng/mL | [45] | |
eicosanoids | rats blood | C18 | off-line | MS/MS; QqQ | 0.4–0.8 ng/mL | [46] | |
doxorubicin | pig lung | mixed-mode | off-line | MS/MS, QqQ | 2.5 µg/g | [47] | |
Metabolomic | untargeted | mouse blood | mixed-mode | off-line | MS | - | [48] |
lipidome | trout muscle | mixed-mode | off-line | HRMS, Orbitrap | - | [49] | |
BaP induced metabolites | trout muscle | mixed-mode | off-line | HRMS | - | [50] | |
oxilipins | rats brain | mixed-mode | off-line | HRMS | - | [51] | |
untargeted | human plasma | mixed-mode | off-line | HRMS, Orbitrap | - | [52] | |
lipidome | human milk | C18 | off-line | MS/MS, QqTOF | - | [53] | |
untargeted | actinobacteria | HLB-PAN | off-line | MS/MS, QqQ | - | [54] | |
Application | Analyte | Binding host | Coating | Desorption | Detector | LOQ | Ref |
Partitioning | chlorpromazine | BSA | PA | off-line | UV | - | [55] |
carbamazepine | HSA | C18 | off-line | UV or MS | - | [56] | |
various drugs | BSA, FBS, phospholipid liposomes, cells | C18 | off-line | MS/MS, Qtrap | - | [57] |
Application | Analyte | Matrix | Coating | Desorption | Detector | LOQ | Ref |
---|---|---|---|---|---|---|---|
Food | OPPs/CMs insecticides | honey | CW/TPR | on-line | MS/MS | (CCα) 1–55 ng/g | [58] |
pesticides | mango | PDMS | on-line | UV | 2.0–10.0 µg/kg | [59] | |
triazoles | grape/apple | PDMS/DVB | on-line | UV | (LOD) 0.08–0.3 mg/kg | [60] | |
salicylates | fruits/vegetables | PDMS/DVB | on-line | UV | 0.007–0.095 µg/mL | [61] | |
isoflavones | soy milk and beverages | PDMS/DVB | on-line | UV | 0.016–0166 µM | [62] | |
trans-resveratrol | Wine/grape juices | PA | on-line | UV | 1.6–3.7ng/mL | [63] | |
Environmental | pharmaceuticals | wastewater | CW/TPR | on-line | MS/MS, ion trap | 0.005–0.05 ng/mL | [64] |
chloramphenicol | tap/sea water | CW-TPR | on-line | UV | 0.3/0.7 ng/mL | [65] | |
- | Environm./Biological | C18 | off-line | MS/MS | - | [66] | |
antibacterials | river | PDMS | on-line | UV | (MDL) 0.12–0.73 ng/mL | [67] | |
EDCs | seawater | Acrylate | off-line | MS/MS, QqQ | - | [68] | |
BFRs | tap water | PDMS/DVB | on-line | MS/MS, Qtrap | (LOD) 0.01−0.04 ng/mL | [69] | |
sudan dyes | wastewater | PDMS/DVB | on-line | UV | 0.2 and 0.5 µg/L | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambonin, C.; Aresta, A. Recent Applications of Solid Phase Microextraction Coupled to Liquid Chromatography. Separations 2021, 8, 34. https://doi.org/10.3390/separations8030034
Zambonin C, Aresta A. Recent Applications of Solid Phase Microextraction Coupled to Liquid Chromatography. Separations. 2021; 8(3):34. https://doi.org/10.3390/separations8030034
Chicago/Turabian StyleZambonin, Carlo, and Antonella Aresta. 2021. "Recent Applications of Solid Phase Microextraction Coupled to Liquid Chromatography" Separations 8, no. 3: 34. https://doi.org/10.3390/separations8030034
APA StyleZambonin, C., & Aresta, A. (2021). Recent Applications of Solid Phase Microextraction Coupled to Liquid Chromatography. Separations, 8(3), 34. https://doi.org/10.3390/separations8030034