Analysis of Chondroitin/Dermatan Sulphate Disaccharides Using High-Performance Liquid Chromatography
Abstract
1. Introduction
2. Materials and Methods
2.1. HPLC Analysis
2.2. Standards
2.3. Sample Preparation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Václavíková, E.; Kvasnička, F. Quality control of chondroitin sulphate used in dietary supplements. Czech. J. Food Sci. 2015, 33, 165–173. [Google Scholar] [CrossRef]
- Henrotin, Y.; Mathy, M.; Sanchez, C.; Lambert, C. Chondroitin sulfate in the treatment of osteoarthritis: From in vitro studies to clinical recommendations. Ther. Adv. Musculoskelet. Dis. 2010, 2, 335–348. [Google Scholar] [CrossRef]
- Mainreck, N.; Brézillon, S.; Sockalingum, G.D.; Maquart, F.-X.; Manfait, M.; Wegrowski, Y. Rapid characterization of glycosaminoglycans using a combined approach by infrared and Raman microspectroscopies. J. Pharm. Sci. 2011, 100, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Collin, E.C.; Carroll, O.; Kilcoyne, M.; Peroglio, M.; See, E.; Hendig, D.; Alini, M.; Grad, S.; Pandit, A. Ageing affects chondroitin sulfates and their synthetic enzymes in the intervertebral disc. Signal. Transduct. Target. Ther. 2017, 2, 17049. [Google Scholar] [CrossRef]
- Sim, J.S.; Jun, G.; Toida, T.; Cho, S.Y.; Choi, D.W.; Chang, S.Y.; Linhardt, R.J.; Kim, Y.S. Quantitative analysis of chondroitin sulfate in raw materials, ophthalmic solutions, soft capsules and liquid preparations. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 818, 133–139. [Google Scholar] [CrossRef]
- Bishnoi, M.; Jain, A.; Hurkat, P.; Jain, S.K. Chondroitin sulphate: A focus on osteoarthritis. Glycoconj. J. 2016, 33, 693–705. [Google Scholar] [CrossRef]
- Santos, G.R.C.; Piquet, A.A.; Glauser, B.F.; Tovar, A.M.F.; Pereira, M.S.; Vilanova, E.; Mourão, P.A.S. Systematic analysis of pharmaceutical preparations of chondroitin sulfate combined with glucosamine. Pharmaceuticals 2017, 10, 38. [Google Scholar] [CrossRef]
- Tully, S.E.; Rawat, M.; Hsieh-Wilson, L.C. Discovery of a TNF-α Antagonist Using Chondroitin Sulfate Microarrays. J. Am. Chem. Soc. 2006, 128, 7740–7741. [Google Scholar] [CrossRef]
- Foscarin, S.; Raha-Chowdhury, R.; Fawcett, J.W.; Kwok, J.C.F. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging 2017, 9, 1607–1622. [Google Scholar] [CrossRef]
- Loers, G.; Liao, Y.; Hu, C.; Xue, W.; Shen, H.; Zhao, W.; Schachner, M. Identification and characterization of synthetic chondroitin-4-sulfate binding peptides in neuronal functions. Sci. Rep. 2019, 9, 1064. [Google Scholar] [CrossRef]
- Lin, R.; Rosahl, T.W.; Whiting, P.J.; Fawcett, J.W.; Kwok, J.C.F. 6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration. PLoS ONE 2011, 6, e21499. [Google Scholar] [CrossRef]
- Sobue, Y.; Kojima, T.; Kurokouchi, K.; Takahashi, S.; Yoshida, H.; Poole, R.; Ishiguro, N. Prediction of progression of damage to articular cartilage 2 years after anterior cruciate ligament reconstruction: Use of aggrecan and type II collagen biomarkers in a retrospective observational study. Arthritis Res. Ther. 2017, 19, 265. [Google Scholar] [CrossRef] [PubMed]
- Hathcock, J.N.; Shao, A. Risk assessment for glucosamine and chondroitin sulfate. Regul. Toxicol. Pharmacol. 2007, 47, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Xia, S.; Shan, C.; Chen, D.; Liu, Y.; Gao, X.; Wang, M.; Kang, H.-B.; Pan, Y.; Liu, S.; et al. The Dietary Supplement Chondroitin-4-Sulfate Exhibits Oncogene-Specific Pro-tumor Effects on BRAF V600E Melanoma Cells. Mol. Cell 2018, 69, 923–937. [Google Scholar] [CrossRef] [PubMed]
- Brasky, T.M.; Kristal, A.R.; Navarro, S.L.; Lampe, J.W.; Peters, U.; Patterson, R.E.; White, E. Specialty Supplements and Prostate Cancer Risk in the VITamins And Lifestyle (VITAL) Cohort. Nutr. Cancer 2011, 63, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Shinmei, M.; Miyauchi, S.; Machida, A.; Miyazaki, K. Quantitation of chondroitin 4—sulfate and chondroitin 6—sulfate in pathologic joint fluid. Arthritis Rheum. 1992, 35, 1304–1308. [Google Scholar] [CrossRef]
- Oguma, T.; Toyoda, H.; Toida, T.; Imanari, T. Analytical method of chondroitin/dermatan sulfates using high performance liquid chromatography/turbo ionspray ionization mass spectrometry: Application to analyses of the tumor tissue sections on glass slides. Biomed. Chromatogr. 2001, 15, 356–362. [Google Scholar] [CrossRef]
- López-Álvarez, M.; López-Senra, E.; Valcárcel, J.; Vázquez, J.A.; Serra, J.; González, P. Quantitative evaluation of sulfation position prevalence in chondroitin sulphate by Raman spectroscopy. J. Raman Spectrosc. 2019, 50, 656–664. [Google Scholar] [CrossRef]
- Ugi, I. The α-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions. Angew. Chem. Int. Ed. Engl. 1962, 1, 8–21. [Google Scholar] [CrossRef]
- Medberry, C.J.; Crapo, P.M.; Siu, B.F.; Carruthers, C.A.; Wolf, M.T.; Nagarkar, S.P.; Agrawal, V.; Jones, K.E.; Kelly, J.; Johnson, S.A.; et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 2013, 34, 1033–1040. [Google Scholar] [CrossRef]
- Crapo, P.M.; Medberry, C.J.; Reing, J.E.; Tottey, S.; Van der Merwe, Y.; Jones, K.E.; Badylak, S.F. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 2012, 33, 3539–3547. [Google Scholar] [CrossRef] [PubMed]
- Koci, Z.; Vyborny, K.; Dubisova, J.; Vackova, I.; Jager, A.; Lunov, O.; Jirakova, K.; Kubinova, S. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Eng. Part. C Methods 2017, 23, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lang, Y.; Li, Q.; Jin, X.; Li, G.; Yu, G. Glycosaminoglycanomic profiling of human milk in different stages of lactation by liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 258, 231–236. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikšík, I.; Kubinová, Š.; Morvan, M.; Výborný, K.; Tatar, A.; Král, V.; Záruba, K.; Sýkora, D. Analysis of Chondroitin/Dermatan Sulphate Disaccharides Using High-Performance Liquid Chromatography. Separations 2020, 7, 49. https://doi.org/10.3390/separations7030049
Mikšík I, Kubinová Š, Morvan M, Výborný K, Tatar A, Král V, Záruba K, Sýkora D. Analysis of Chondroitin/Dermatan Sulphate Disaccharides Using High-Performance Liquid Chromatography. Separations. 2020; 7(3):49. https://doi.org/10.3390/separations7030049
Chicago/Turabian StyleMikšík, Ivan, Šárka Kubinová, Marine Morvan, Karel Výborný, Ameneh Tatar, Vladimír Král, Kamil Záruba, and David Sýkora. 2020. "Analysis of Chondroitin/Dermatan Sulphate Disaccharides Using High-Performance Liquid Chromatography" Separations 7, no. 3: 49. https://doi.org/10.3390/separations7030049
APA StyleMikšík, I., Kubinová, Š., Morvan, M., Výborný, K., Tatar, A., Král, V., Záruba, K., & Sýkora, D. (2020). Analysis of Chondroitin/Dermatan Sulphate Disaccharides Using High-Performance Liquid Chromatography. Separations, 7(3), 49. https://doi.org/10.3390/separations7030049