Isolation, Characterization, and HPTLC-Quantification of Compounds with Anticancer Potential from Loranthus Acaciae Zucc.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Authentication
2.2. Preparation of the Extracts and Fractions
2.3. Compound Isolation and Identification
2.4. Anticancer Activity
2.4.1. Determination of Cell Viability
2.4.2. Flow Cytometric Analysis of Cell Apoptosis
2.5. Development of the HPTLC Procedure to Determine Betulinic Acid and β-Sitosterol in LAHE
2.6. Statistical Analysis
3. Results and Discussion
3.1. Isolated Compounds from LAHE
3.2. Cytotoxic Activity
3.3. Concurrent Analysis of Betulinic Acid and β-Sitosterol in LAHE by a Validated HPTLC Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yar, M.S.; Haider, K.; Gohel, V.; Siddiqui, N.A.; Kamal, A. Synthetic lethality on drug discovery: An update on cancer therapy. Expert Opin. Drug Discov. 2020, 15, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.K.; Basu, S.; Sarkar, N.; Ghosh, A.C. Advances in cancer therapy with plant based natural products. Curr. Med. Chem. 2001, 8, 1467–1486. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Vuorelaa, P.; Leinonenb, M.; Saikkuc, P.; Tammelaa, P.; Rauhad, J.P.; Wennberge, T.; Vuorela, H. Natural products in the process of finding new drug candidates. Curr. Med. Chem. 2004, 11, 1375–1389. [Google Scholar] [CrossRef]
- Rahman, M.A.; Mossa, J.S.; Al-Said, M.S.; Al-Yahya, M.A. Medicinal plant diversity in the flora of Saudi Arabia 1: A report on seven plant families. Fitoterapia 2004, 75, 149–161. [Google Scholar] [CrossRef]
- Harlev, E.; Nevo, E.; Lansky, E.P.; Lansky, S.; Bishayee, A. Anticancer attributes of desert plants: A review. Anticancer Drugs 2012, 23, 255–271. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci. 2018, 19, 3533. [Google Scholar] [CrossRef] [Green Version]
- Waly, N.M.; El Din, A.A.; Jrais, R.N. Botanical and Biological studies of six parasitic species of family Loranthaceae growing in Kingdom of Saudi Arabia. Int. J. Environ. Sci. 2012, 4, 196–205. [Google Scholar]
- Elegami, A.A.; Elnima, E.I.; Muddathir, A.K.; Omer, M.E. Antimicrobial activity of Plicosepalus acaciae. Fitoterapia 2001, 72, 431–434. [Google Scholar] [CrossRef]
- Aldawsari, H.M.; Hanafy, A.; Labib, G.S.; Badr, J.M. Antihyperglycemic activities of extracts of the mistletoes Plicosepalus acaciae and P. curviflorus in comparison to their solid lipid nanoparticle suspension formulations. Z. Nat. C 2014, 69, 391–398. [Google Scholar] [CrossRef]
- Badr, J.M.; Shaala, L.A.; Youssef, D.T.A. Loranthin: A new polyhydroxylated flavanocoumarin from Plicosepalus acacia with significant free radical scavenging and antimicrobial activity. Phytochem. Lett. 2013, 6, 113–117. [Google Scholar] [CrossRef]
- Sadik, G.; Islam, R.; Rahman, M.M.; Khondkar, P.; Rashid, M.A.; Sarker, S.D. Antimicrobial and cytotoxic constituents of Loranthus globosus. Fitoterapia 2003, 74, 308–311. [Google Scholar] [CrossRef]
- Noman, O.M.; Mothana, R.A.; Al-Rehaily, A.J.; Al Qahtani, A.S.; Nasr, F.A.; Khaled, J.M.; Alajmi, M.F.; Al-Said, M.S. Phytochemical analysis and anti-diabetic, anti-inflammatory and antioxidant activities of Loranthus acaciae Zucc. Grown in Saudi Arabia. Saudi Pharm. J. 2019, 27, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Zorofchian Moghadamtousi, S.; Hajrezaei, M.; Abdul Kadir, H.; Zandi, K. Loranthus micranthus Linn.: Biological Activities and Phytochemistry. Evid. Based Complement. Altern. Med. eCAM 2013, 2013, 273712. [Google Scholar]
- Moghadamtousi, S.Z.; Kamarudin, M.N.; Chan, C.K.; Goh, B.H.; Kadir, H.A. Phytochemistry and biology of Loranthus parasiticus Merr, a commonly used herbal medicine. Am. J. Chin. Med. 2014, 42, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Ameer, O.Z.; Salman, I.M.; Quek, K.J.; Asmawi, M.Z. Loranthus ferrugineus: A Mistletoe from Traditional Uses to Laboratory Bench. J Pharmacopunct. 2015, 18, 7–18. [Google Scholar] [CrossRef]
- Charde, M.; Chakolkar, M.; Welankiwar, A.; Keshwar, U.; Shrikande, B. Development of validated HPTLC method for the estimation of betasitosterol in marketed herbal fromulation of muscle and joint HRX pain relieving oil. Int. J. Phytopharm. 2014, 4, 70–74. [Google Scholar]
- Ahmad, H.; Sehgal, S.; Mishra, A.; Gupta, R.; Saraf, S.A. TLC Detection of β-sitosterol in Michelia champaca L. Leaves and Stem Bark and it’s Determination by HPTLC. Pharmacogn. J. 2012, 4, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Al-Massarani, S.M.; El Gamal, A.A.; Alam, P.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Farshori, N.N. Isolation, biological evaluation and validated HPTLC-quantification of the marker constituent of the edible Saudi plant Sisymbrium irio L. Saudi Pharm. J. 2017, 25, 750–759. [Google Scholar] [CrossRef] [Green Version]
- Mallick, S.S.; Dighe, V.V. Detection and Estimation of alpha-Amyrin, beta-Sitosterol, Lupeol, and n-Triacontane in Two Medicinal Plants by High Performance Thin Layer Chromatography. Adv. Chem. 2014, 2014, 143948. [Google Scholar]
- Mukherjee, D.; Kumar, N.S.; Khatua, T.; Mukherjee, P.K. Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nymphaeaceae) rhizome extract. Phytochem. Anal. 2010, 21, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Murthy, K.; Mishra, S. TLC Determination of Betulinic Acid from Nymphodies macrospermum: A New Botanical Source for Tagara. Chromatographia 2008, 68, 877. [Google Scholar] [CrossRef]
- Bhave, R.K.; Barve, S.S. HPTLC method validation for detection and quantification of betulinic acid in Ancistrocladus heyneanus wall Ex. J. Graham. Int. J. Pharm. Pharm. Sci. 2014, 6, 328–331. [Google Scholar]
- Maurya, A.; Srivastava, S. A simple and reliable HPTLC method for the determination of four marker components in the quality control of Alstonia scholaris. JPC TLC 2013, 26, 254–259. [Google Scholar]
- Al-Zharani, M.; Nasr, F.A.; Abutaha, N.; Alqahtani, A.S.; Noman, O.M.; Mubarak, M.; Wadaan, M.A. Apoptotic Induction and Anti-Migratory Effects of Rhazya stricta Fruit Extracts on a Human Breast Cancer Cell Line. Molecules 2019, 24, 3968. [Google Scholar] [CrossRef] [Green Version]
- Guideline, I.H.T. Validation of analytical procedures: Text and methodology. Q2 (R1) 2005, 1, 1–15. [Google Scholar]
- Al-Taweel, A.M.; Perveen, S.; Fawzy, G.A.; Alqasoumi, S.I.; El Tahir, K.E. New flavane gallates isolated from the leaves of Plicosepalus curviflorus and their hypoglycemic activity. Fitoterapia 2012, 83, 1610–1615. [Google Scholar] [CrossRef]
- Mariño, G.; Kroemer, G. Mechanisms of apoptotic phosphatidylserine exposure. Cell Res. 2013, 23, 1247–1248. [Google Scholar] [CrossRef] [Green Version]
- Wlodkowic, D.; Telford, W.; Skommer, J.; Darzynkiewicz, Z. Apoptosis and beyond: Cytometry in studies of programmed cell death. Methods Cell Biol. 2011, 103, 55–98. [Google Scholar]
- Fulda, S. Betulinic Acid for cancer treatment and prevention. Int. J. Mol. Sci. 2008, 9, 1096–1107. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.L.; Kuzmanoff, K.L.; Ling-Indeck, L.; Pezzuto, J.M. Betulinic acid induces apoptosis in human neuroblastoma cell lines. Eur. J. Cancer 1997, 33, 2007–2010. [Google Scholar] [CrossRef]
- Ehrhardt, H.; Fulda, S.; Fuhrer, M.; Debatin, K.M.; Jeremias, I. Betulinic acid-induced apoptosis in leukemia cells. Leukemia 2004, 18, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Rzeski, W.; Stepulak, A.; Szymanski, M.; Sifringer, M.; Kaczor, J.; Wejksza, K.; Zdzisinska, B.; Kandefer-Szerszen, M. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedeberg’s Arch. Pharm. 2006, 374, 11–20. [Google Scholar] [CrossRef]
- Alam, P.; Siddiqui, N.; Al-Rehaily, A.; Alajmi, M.; Basudan, O.; Khan, T. Stability indicating densitometric HPTLC method for quantitative analysis of biomarker naringin in the leaves and stems of Rumex vesicarius L. J. Altern. Complement. Med. 2014, 20, A126. [Google Scholar] [CrossRef]
- Alam, P.; Siddiqui, N.A.; Basudan, O.A.; Al-Rehaily, A.; Alqasoumi, S.I.; Abdel-Kader, M.; Donia, A.; Shakeel, F. Comparative profiling of biomarker psoralen in antioxidant active extracts of different species of genus Ficus by validated HPTLC method. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Alam, P.; Basudan, O.; Siddiqui, N.; Alqasoumi, S.; Abdel-Kader, M.; Raheim Donia Abd El, M.; Alam, P. Development of densitometric HPTLC method for quantitative analysis of biomarker Lupeol in the leaves of different species of genus Ficus. J. Planar Chromatogr. 2015, 28, 30–35. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Alam, P.; Al-Rehaily, A.J.; Al-Oqail, M.M.; Parvez, M.K. Simultaneous quantification of biomarkers bergenin and menisdaurin in the methanol extract of aerial parts of Flueggea virosa by validated HPTLC densitometric method. J. Chromatogr. Sci. 2015, 53, 824–829. [Google Scholar] [CrossRef]
- AlAjmi, M.F.; Alam, P.; Siddiqui, N.A.; Basudan, O.A.; Hussain, A. Quantitative analysis of biomarker rutin in different species of genus Ficus by validated NP and RP-HPTLC methods. Pak. J. Pharm. Sci. 2015, 28, 2213–2220. [Google Scholar]
Position | Compound 1 | Compound 2 | ||
---|---|---|---|---|
δH (J in Hz) δc ppm | δH (J in Hz) δc ppm | |||
1 | 39.4 | 37.5 | ||
2 | 28.1 | 31.9 | ||
3 | 3.34 (dd, J = 9.5, 6.0) | 76.90 | 3.53 (dd, J = 4.5, 4.2, 3.8) | 72.0 |
4 | 39.6 | 42.5 | ||
5 | 0.70 * | 55.55 | 5.36 (t, J = 6.4) | 140.9 |
6 | 18.6 | 121.9 | ||
7 | 34.7 | 32.1 | ||
8 | 40.38 | 32.1 | ||
9 | 50.6 | 50.3 | ||
10 | 37.6 | 36.7 | ||
11 | 20.58 | 21.3 | ||
12 | 25.9 | 39.9 | ||
13 | 38.6 | 42.6 | ||
14 | 42.13 | 56.9 | ||
15 | 30.22 | 26.3 | ||
16 | 31.8 | 28.5 | ||
17 | 55.02 | 56.3 | ||
18 | 46.75 | 36.3 | ||
19 | 2.95 (t, J = 7) | 48.6 | 0.93 (d, J = 6.5) | 19.2 |
20 | 150.46 | 34.2 | ||
21 | 30.22 | 26.3 | ||
22 | 38.3 | 46.1 | ||
23 | 0.87 * | 28.5 | 23.3 | |
24 | 0.64 * | 16.09 | 0.84 (t, J = 7.2) | 12.2 |
25 | 0.76 * | 15.96 | 29.4 | |
26 | 0.87 * | 15.8 | 0.83 (d, J = 6.4) | 20.1 |
27 | 0.93 * | 14.5 | 0.81 (d, J = 6.4) | 19.6 |
28 | 177.4 | 0.68 s | 19.0 | |
29a | 4.55 (d, J = 0.4) | 109.8 | 1.01 s | 12.0 |
29b | 4.68 (d, J = 0.4) | |||
30 | 1.80 (d, J = 0.5) | 19.4 | - | - |
Cell Lines | IC50 (µg/mL) | |||||
---|---|---|---|---|---|---|
Crude ex. | Hex ex. | CHCl3 ex. | ButOH ex. | Betulinic Acid (µM) | Cisplatin (µM) | |
A549 | 180 ± 4.1 | 62 ± 2.1 | 63.5 ± 1.5 | 99.5 ± 1.2 | 37.22 ± 1.4 | 6.9 ± 0.5 |
HepG2 | 284 ± 3.2 | 94.5 ± 2.5 | 154 ± 2.6 | 166 ± 1.9 | 43.8 ± 1.6 | 8.3 ± 0.3 |
MCF-7 | 280 ± 2.1 | 58.9 ± 2 | 88 ± 3.4 | 94 ± 2.7 | 37.8 ± 1.2 | 5.9 ± 0.4 |
HUVEC | 289 ± 3.1 | 99.3 ± 2.5 | 105 ± 1.1 | 118 ± 1.5 | 80.79 ± 2.2 | 20.2 ± 0.5 |
Parameters | Betulinic Acid | β-Sitosterol |
---|---|---|
Linearity range (ng/spot) | 200–1400 | 200–1400 |
Regression equation | Y = 5.206X + 117.77 | Y = 4.514X + 1039.7 |
Correlation (r2) coefficient | 0.996 | 0.9979 |
Slope ± SD | 5.206 ± 0.05 | 4.514 ± 0.056 |
Intercept ± SD | 117.77 ± 8.60 | 1039.7 ± 26.45 |
Standard error of slope | 0.022 | 0.022 |
Standard error of intercept | 3.51 | 10.79 |
Rf | 0.31 ± 0.001 | 0.41 ± 0.001 |
LOD (ng) | 34.51 | 40.95 |
LOQ (ng) | 104.57 | 124.11 |
Percent (%) of Betulinic Acid and β-Sitosterol Added to Analyte | Theoretical Concentration of Betulinic Acid and β-Sitosterol (ng/Band) | Concentration Found (ng/Band) ± SD | %RSD | %Recovery | |||
---|---|---|---|---|---|---|---|
Betulinic Acid | β-Sitosterol | Betulinic Acid | β-Sitosterol | Betulinic Acid | β-Sitosterol | ||
0 | 400 | 395.43 ± 5.13 | 395.50 ± 4.17 | 1.29 | 1.05 | 98.85 | 98.87 |
50 | 600 | 593.64 ± 6.91 | 596.41 ± 6.11 | 1.16 | 1.02 | 98.94 | 99.40 |
100 | 800 | 797.67 ± 7.83 | 793.95 ± 8.42 | 0.98 | 1.06 | 99.71 | 99.24 |
150 | 1000 | 995.41 ± 9.31 | 991.90 ± 9.47 | 0.932 | 0.95 | 99.54 | 99.19 |
Conc. of Standard Added (ng/Band) | Betulinic Acid | β-Sitosterol | ||||||
---|---|---|---|---|---|---|---|---|
Intra-Day Precision | Inter-Pay Precision | Intra-Day Precision | Inter-Day Precision | |||||
Average Conc. Found ± SD | %RSD | Average Conc. Found ± SD | %RSD | Average Conc. Found ± SD | %RSD | Average Conc. Found ± SD | %RSD | |
400 | 397.13 ± 5.17 | 1.30 | 393.28 ± 5.12 | 1.29 | 397.14 ± 4.69 | 1.18 | 392.71 ± 4.57 | 1.16 |
600 | 595.31 ± 6.91 | 1.16 | 593.39 ± 6.87 | 1.15 | 595.58 ± 6.17 | 1.03 | 591.15 ± 6.11 | 1.03 |
800 | 795.50 ± 8.72 | 1.09 | 791.66 ± 8.68 | 1.08 | 792.84 ± 8.05 | 1.01 | 790.62 ± 7.87 | 0.99 |
Optimization Condition | Betulinic Acid (400 ng/Band) | β-Sitosterol (400 ng/Band) | ||
---|---|---|---|---|
SD | %RSD | SD | %RSD | |
Mobile phase composition; (Chloroform: methanol: acetic acid) | ||||
(97: 2: 1) | 4.87 | 1.22 | 4.37 | 1.10 |
(96.5: 2.5: 1) | 4.81 | 1.21 | 4.31 | 1.08 |
(97.5: 1.5: 1) | 4.79 | 1.20 | 4.28 | 1.07 |
Mobile phase volume (for saturation) | ||||
(18 mL) | 4.59 | 1.16 | 4.41 | 1.11 |
(20 mL) | 4.56 | 1.15 | 4.35 | 1.09 |
(22 mL) | 4.55 | 1.15 | 4.32 | 1.09 |
Duration of saturation | ||||
(10 min) | 4.77 | 1.20 | 4.13 | 1.03 |
(20 min) | 4.73 | 1.19 | 4.09 | 1.02 |
(30 min) | 4.71 | 1.18 | 4.03 | 1.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noman, O.M.; Nasr, F.A.; Mothana, R.A.; Alqahtani, A.S.; Qamar, W.; Al-Mishari, A.A.; Al-Rehaily, A.J.; Siddiqui, N.A.; Alam, P.; Almarfadi, O.M. Isolation, Characterization, and HPTLC-Quantification of Compounds with Anticancer Potential from Loranthus Acaciae Zucc. Separations 2020, 7, 43. https://doi.org/10.3390/separations7030043
Noman OM, Nasr FA, Mothana RA, Alqahtani AS, Qamar W, Al-Mishari AA, Al-Rehaily AJ, Siddiqui NA, Alam P, Almarfadi OM. Isolation, Characterization, and HPTLC-Quantification of Compounds with Anticancer Potential from Loranthus Acaciae Zucc. Separations. 2020; 7(3):43. https://doi.org/10.3390/separations7030043
Chicago/Turabian StyleNoman, Omar M., Fahd A. Nasr, Ramzi A. Mothana, Ali S. Alqahtani, Wajhul Qamar, Abdullah A. Al-Mishari, Adnan J. Al-Rehaily, Nasir A. Siddiqui, Perwez Alam, and Omer M. Almarfadi. 2020. "Isolation, Characterization, and HPTLC-Quantification of Compounds with Anticancer Potential from Loranthus Acaciae Zucc." Separations 7, no. 3: 43. https://doi.org/10.3390/separations7030043
APA StyleNoman, O. M., Nasr, F. A., Mothana, R. A., Alqahtani, A. S., Qamar, W., Al-Mishari, A. A., Al-Rehaily, A. J., Siddiqui, N. A., Alam, P., & Almarfadi, O. M. (2020). Isolation, Characterization, and HPTLC-Quantification of Compounds with Anticancer Potential from Loranthus Acaciae Zucc. Separations, 7(3), 43. https://doi.org/10.3390/separations7030043