Characterization of 9 Gas Chromatography Columns by Linear and Lee Retention Indices for Polychlorinated Biphenyls and Polychlorinated Naphthalenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Calculation of Retention Indices
2.3. GC Columns and Physical Dimensions
2.4. Instrument Parameters
3. Results and Discussion
3.1. n-Alkanes vs. PAH Retention Markers
3.2. Critical Congener Resolution
3.3. Column Selectivity
3.3.1. Column Selectivity PCBs
3.3.2. Column Selectivity PCNs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erickson, M.D.; Kaley, R.G. Applications of polychlorinated biphenyls. Environ. Sci. Pollut. Res. 2011, 18, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Kover, F.D. Environmental Hazard Assessment Report: Chlorinated Naphthalenes; US. EPA: Washingtong, DC, USA, 1975.
- O’Connor, R.B. Chlorinated naphthalenes. J. Occup. Med. 1972, 14, 399. [Google Scholar] [CrossRef]
- Beck, U. Chlorinated naphthalene. Ullmann’s Encycl. Ind. Chem. 1986, 6, 350–355. [Google Scholar]
- The Stockholm Convention on Persistent Organic Pollutants Stockholm Convention; The Stockholm Convention: Stockholm, Sweden, 2001.
- U.S. EPA. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and Dioxin-Like Compounds; U.S. EPA: Washingtong, DC, USA, 2010.
- Fernandes, A.; Falandysz, J.; Olivero-Verbel, J. A new focus on legacy pollutants: Chlorinated Paraffins (CPs) and Polychlorinated Naphthalenes (PCNs). Chemosphere 2020, 238, 124580. [Google Scholar] [CrossRef]
- Puzyn, T.; Falandysz, J.; Jones, P.D.; Giesy, J.P. Quantitative structure—Activity relationships for the prediction of relative in vitro potencies (REPs) for chloronaphthalenes. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Smith, F.; Panton, S.; Fernandes, A.R. A retrospective investigation into the occurrence and human exposure to polychlorinated naphthalenes (PCNs), dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs through cod liver products (1972–2017). Chemosphere 2019. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-C.; Tsai, P.-C.; Chen, P.-C.; Hsieh, C.-J.; Leon Guo, Y.-L.; Rogan, W.J. Mortality after exposure to Polychlorinated Biphenyls and Dibenzofurans: 30 years after the “Yucheng Accident”. Environ. Res. 2013, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Aoki, Y. Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters—What we have learned from Yusho disease. Environ. Res. 2001. [Google Scholar] [CrossRef]
- Gregoraszczuk, E.L.; Ptak, A. Endocrine-disrupting chemicals: Some actions of POPs on female reproduction. Int. J. Endocrinol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Coulter, D.P.; Huff Hartz, K.E.; Sepuíveda, M.S.; Godfrey, A.; Garvey, J.E.; Lydy, M.J. Lifelong exposure to dioxin-like PCBs alters paternal offspring care behavior and reduces male fish reproductive success. Environ. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Lega, R.; Megson, D.; Hartley, C.; Crozier, P.; MacPherson, K.; Kolic, T.; Helm, P.A.; Myers, A.; Bhavsar, S.P.; Reiner, E.J. Congener specific determination of polychlorinated naphthalenes in sediment and biota by gas chromatography high resolution mass spectrometry. J. Chromatogr. A 2017, 1479, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Schlingermann, M.; Berrow, S.; Craig, D.; McHugh, B.; Marrinan, M.; O’Brien, J.; O’Connor, I.; Ryan, C.; Mudzatsi, E.; White, P. High concentrations of persistent organic pollutants in adult killer whales (Orcinus orca) and a foetus stranded in Ireland. Mar. Pollut. Bull. 2019. [Google Scholar] [CrossRef]
- Burkard, M.; Bengtson Nash, S.; Gambaro, G.; Whitworth, D.; Schirmer, K.; Burkard, M.; Bengtson Nash, S.; Gambaro, G.; Schirmer, K.; Whitworth, D. Lifetime extension of humpback whale skin fibroblasts and their response to lipopolysaccharide (LPS) and a mixture of polychlorinated biphenyls (Aroclor). Cell Biol. Toxicol. 2019, 35, 387–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, J.C.; Jepson, P.D.; Ssuna, R.K.; Deaville, R.; Allchin, C.R.; Law, R.J.; Fenton, A. The relationship between polychlorinated biphenyls in blubber and levels of nematode infestations in harbour porpoises, Phocoena phocoena. Parasitology 2019. [Google Scholar] [CrossRef]
- Jepson, P.D.; Deaville, R.; Barber, J.L.; Aguilar, À.; Borrell, A.; Murphy, S.; Barry, J.; Brownlow, A.; Barnett, J.; Berrow, S.; et al. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci. Rep. 2015. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Niu, L.; Zou, D.; Zhu, S.; Liu, W. Congener-specific composition of polychlorinated biphenyls (PCBs) in soil-air partitioning and the associated health risks. Sci. Total Environ. 2019, 684, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Hornbuckle, K.C. Inadvertent polychlorinated biphenyls in commercial paint pigments †. Environ. Sci. Technol. 2010, 44, 2822–2827. [Google Scholar] [CrossRef] [PubMed]
- Hutzinger, O.; Ghulam, T.; Choudhry, G.; Chittim, B.G.; Johnston, L.E. Formation of polychiorinated dibenzofurans and dioxins during combustion, electrical equipment fires and PCB incineration. Environ. Health Perspect. 1985, 60, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Megson, D.; Focant, J.F.; Patterson, D.G.; Robson, M.; Lohan, M.C.; Worsfold, P.J.; Comber, S.; Kalin, R.; Reiner, E.; O’Sullivan, G. Can polychlorinated biphenyl (PCB) signatures and enantiomer fractions be used for source identification and to age date occupational exposure? Environ. Int. 2015. [Google Scholar] [CrossRef] [Green Version]
- Herkert, N.J.; Jahnke, J.C.; Hornbuckle, K.C. Emissions of tetrachlorobiphenyls (PCBs 47, 51, and 68) from polymer resin on kitchen cabinets as a non-aroclor source to residential air. Environ. Sci. Technol. 2018, 52, 5154–5160. [Google Scholar] [CrossRef]
- Frame, G.M.; Wagner, R.E.; Carnahan, J.C.; Brown, J.F.; May, R.J.; Smullen, L.A.; Bedard, D.L. Comprehensive, quantitative, congener-specific analyses of eight aroclors and complete PCB congener assignments on DB-1 capillary GC columns. Chemosphere 1996. [Google Scholar] [CrossRef]
- Frame, G. Collaborative study of 209 PCB congeners and 6 aroclors on 20 different columns part 1. Fresenius J. Anal. Chem. 1997, 357, 701–713. [Google Scholar] [CrossRef]
- Kováts, E. Gas-chromatographische Charakterisierung organischer Verbindung en Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Ettre, L.S. The Kováts Retention Index System. Anal. Chem. 1964. [Google Scholar] [CrossRef]
- Lee, M.L.; Vassilaros, D.L.; White, C.M.; Novotny, M. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal. Chem. 1979, 51, 768–773. [Google Scholar] [CrossRef]
- Babushok, V.I. Chromatographic retention indices in identification of chemical compounds. TrAC Trends Anal. Chem. 2015, 69, 98–104. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Rostad, C.E.; Pereira, W.E.; Survey, U.S.G. Kovats and Lee Retention Indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest. J. High Resolut. Chromatogr. Chromatogr. Commun. 1986, 9, 328–334. [Google Scholar] [CrossRef]
- d’Acampora Zellner, B.; Bicchi, C.; Dugo, P.; Rubiolo, P.; Dugo, G.; Mondello, L. Linear retention indices in gas chromatographic analysis: A review. Flavour Fragr. J. 2008, 23, 297–314. [Google Scholar] [CrossRef]
- Frame, G.M.; Cochran, J.W.; Bøwadt, S.S. Complete PCB congener distributions for 17 aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. J. High Resolut. Chromatogr. 1996. [Google Scholar] [CrossRef]
- Frame, G.M. Collaborative study of 209 PCB congeners and 6 aroclors on 20 different columns part 2. Fresenius J. Anal. Chem. 1997, 357, 714–722. [Google Scholar] [CrossRef]
- Rayne, S.; Ikonomou, M.G. Development of a multiple-class high-resolution gas chromatographic relative retention time model for halogenated environmental contaminants. Anal. Chem. 2003, 75, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Järnberg, U.; Asplund, L.; Jakobsson, E. Gas chromatographic retention behaviour of polychlorinated naphthalenes on non-polar, polarizable, polar and smectic capillary columns. J. Chromatogr. A 1994, 683, 385–396. [Google Scholar] [CrossRef]
- Focant, J.F.; Sjödin, A.; Patterson, D.G. Improved separation of the 209 polychlorinated biphenyl congeners using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A 2004. [Google Scholar] [CrossRef]
- Castello, G.; Testini, G. Gas chromatographic retention index system for polychlorinated biphenyls: Possibilities and limitations. J. Chromatogr. A 1997, 787, 215–225. [Google Scholar] [CrossRef]
- Lei, Y.D.; Wania, F.; Shiu, W.Y. Vapor pressures of the polychlorinated naphthalenes. J. Chem. Eng. Data 1999, 44, 577–582. [Google Scholar] [CrossRef]
- Stultz, C.; Dorman, F. Characterization of 9 gas chromatography columns by Kovats and Lee retention indices for dioxin analysis. J. Chromatogr. A 2020, 1614, 460701. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.R. HRGC Separation of PCB Congeners. J. High Resolut. Chromatogr. 1995, 18, 141–151. [Google Scholar] [CrossRef]
- Stultz, C.; Jobst, K.J.; Haimovici, L.; Jones, R.; Besevic, S.; Byer, J.; Organtini, K.L.; Kolic, T.; Reiner, E.J.; Dorman, F.L. Evaluation of multiple alternative instrument platforms for targeted and non-targeted dioxin and furan analysis. J. Mass Spectrom. 2018, 53, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Kafafi, S.A.; Afeefy, H.Y.; Ali, A.H.; Said, H.K.; Kafafi, A.G. Binding of Polychlorinated Biphenyls to the Aryl Hydrocarbon Receptor. Environ. Health Perspect. 1993, 101, 422–428. [Google Scholar] [CrossRef]
- Fernandes, A.; Rose, M.; Falandysz, J. Polychlorinated naphthalenes (PCNs) in food and humans. Environ. Int. 2017. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, F.; Soehler, J.; Opel, M. Novel GC separation characteristics for 209 PCB congeners—The HT8-PCB column revisited. Organohalogen Compd. 2016, 78, 940–943. [Google Scholar]
Column | Dimension | Phase |
---|---|---|
Rtx-1MS | 60 m × 0.18 mm × 0.10 µm | 100% polydimethyl siloxane |
Rtx-Dioxin2 | 60 m × 0.18 mm × 0.10 µm | Restek proprietary phase |
Rtx-200 | 60 m × 0.25 mm × 0.25 µm | Trifluoropropylmethyl polysiloxane |
Rtx-5MS | 60 m × 0.18 mm × 0.10 µm | 5% diphenyl 95% polydimethyl siloxane |
Rxi-5MS | 60 m × 0.18 mm × 0.10 µm | 5% diphenyl 95% polydimethyl siloxane |
Rxi-5SilMS | 60 m × 0.18 mm × 0.10 µm | 1,4-bis(dimethylsiloxy)phenylene polydimethyl siloxane |
Rxi-XLB | 60 m × 0.18 mm × 0.10 µm | Restek proprietary phase |
Rxi-17SilMS | 60 m × 0.25 mm × 0.25 µm | (50%-phenyl)-methylpolysiloxane |
HT8 | 60 m × 0.18 mm × 0.10 µm | 8% phenyl polycarborane-siloxane |
PCB Number | Retention Time | Lee Index | Linear Index |
---|---|---|---|
117 | 39.11 | 361.41 | 2150.29 |
87 | 39.13 | 361.49 | 2151.29 |
111 | 39.17 | 362.00 | 2154.29 |
115 | 39.19 | 362.00 | 2154.73 |
85 | 39.26 | 362.67 | 2158.86 |
116 | 39.27 | 362.84 | 2160.00 |
120 | 39.38 | 363.76 | 2166.29 |
110 | 39.48 | 364.43 | 2171.35 |
82 | 39.83 | 367.37 | 2191.40 |
124 | 40.16 | 370.22 | 2211.21 |
108 | 40.23 | 370.89 | 2216.20 |
107 | 40.25 | 370.89 | 2216.82 |
123 | 40.34 | 371.73 | 2222.43 |
118 | 40.44 | 372.48 | 2228.66 |
106 | 40.46 | 372.82 | 2230.53 |
114 | 40.79 | 375.50 | 2250.47 |
122 | 40.86 | 376.09 | 2254.83 |
105 | 41.27 | 379.45 | 2280.37 |
127 | 41.41 | 380.70 | 2289.10 |
126 | 42.43 | 389.26 | 2352.65 |
Hexachlorinated Naphthalenes | Retention Time (mins) | Lee Index | Linear Index |
---|---|---|---|
1,2,3,4,6,7-hexachloro | 41.79 | 383.92 | 2310.56 |
1,2,3,5,6,7-hexachloro | 41.81 | 384.09 | 2311.80 |
1,2,3,4,5,7-hexachloro | 42.20 | 387.35 | 2336.65 |
1,2,3,5,6,8-hexachloro | 42.20 | 387.35 | 2336.65 |
1,2,3,5,7,8-hexachloro | 42.35 | 388.61 | 2345.34 |
1,2,4,5,7,8-hexachloro | 42.44 | 389.36 | 2350.93 |
1,2,4,5,6,8-hexachloro | 42.45 | 389.45 | 2351.55 |
1,2,3,4,5,6-hexachloro | 43.10 | 394.89 | 2392.55 |
1,2,3,4,5,8-hexachloro | 43.37 | 397.15 | 2410.10 |
1,2,3,6,7,8-hexachloro | 43.47 | 397.99 | 2416.22 |
Column | PCB 105 | PCB 114 | PCB 118 | PCB 123 | PCB 126 | PCB 156 | PCB 157 | PCB 167 |
---|---|---|---|---|---|---|---|---|
Rtx-1MS | 122 | 106 | 118 | |||||
123 | 108 | |||||||
107 | ||||||||
Dioxin2 | 127 | 122 | 106 | 107 | 157 | 156 | ||
108 | ||||||||
124 | ||||||||
Rtx-200 | 127 | 107 | 128 | |||||
106 | ||||||||
Rtx-5MS | 127 | 122 | 123 | 118 | 128 | |||
106 | 108 | |||||||
107 | ||||||||
106 | ||||||||
Rxi-5MS | 127 | 122 | 123 | 108 | 128 | |||
106 | 107 | |||||||
106 | ||||||||
118 | ||||||||
Rxi-5SilMS | 127 | 122 | 123 | 124 | 128 | |||
106 | 108 | |||||||
107 | ||||||||
106 | ||||||||
118 | ||||||||
Rxi-17SilMS | 122 | 123 | 118 | 129 | ||||
106 | 107 | |||||||
108 | ||||||||
Rxi-XLB | 122 | 106 | 106 | 157 | 156 | |||
107 | ||||||||
108 | ||||||||
SGE-HT8 | 127 | 106 | 107 | 128 | ||||
108 | ||||||||
124 | ||||||||
106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stultz, C.; Dorman, F.L. Characterization of 9 Gas Chromatography Columns by Linear and Lee Retention Indices for Polychlorinated Biphenyls and Polychlorinated Naphthalenes. Separations 2020, 7, 38. https://doi.org/10.3390/separations7030038
Stultz C, Dorman FL. Characterization of 9 Gas Chromatography Columns by Linear and Lee Retention Indices for Polychlorinated Biphenyls and Polychlorinated Naphthalenes. Separations. 2020; 7(3):38. https://doi.org/10.3390/separations7030038
Chicago/Turabian StyleStultz, Conner, and Frank L. Dorman. 2020. "Characterization of 9 Gas Chromatography Columns by Linear and Lee Retention Indices for Polychlorinated Biphenyls and Polychlorinated Naphthalenes" Separations 7, no. 3: 38. https://doi.org/10.3390/separations7030038
APA StyleStultz, C., & Dorman, F. L. (2020). Characterization of 9 Gas Chromatography Columns by Linear and Lee Retention Indices for Polychlorinated Biphenyls and Polychlorinated Naphthalenes. Separations, 7(3), 38. https://doi.org/10.3390/separations7030038