Simultaneous Determination of Pesticides and Veterinary Pharmaceuticals in Environmental Water Samples by UHPLC–Quadrupole-Orbitrap HRMS Combined with On-Line Solid-Phase Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling and Sample Preparation
2.3. UHPLC–q-Orbitrap HRMS Instrumentation and Conditions
2.4. Method Validation
3. Results and Discussion
3.1. Method Validation
3.1.1. Linearity
3.1.2. MDLs and MQLs
3.1.3. Precision and Accuracy
3.1.4. Method Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisk Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.-J.; Yang, G.-G.; Liu, S.; Zhao, J.-L.; Chen, F.; Zhang, R.-Q.; Peng, F.-Q.; Zhang, Q.-Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2012, 1244, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Śkrbicć, B.; Živančev, J.; Ferrando-Climent, L.; Barceló, D. Determinarion of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap in different types of water in Serbia. Sci. Total Environ. 2014, 468–469, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cornejo, J.; Nehring, R.; Osteen, C.; Wechsler, S.; Martin, A.; Vialou, A. Pesticide Use in U.S. Agriculture: 21 Selected Crops, 1960–2008; EIB-124; U.S. Department of Agriculture: Washington, DC, USA, 2014.
- Hong, Y.; Sharma, V.K.; Chiang, P.-C.; Kim, H. Fast-target analysis and hourly variation of 60 pharmaceuticals in wastewater using UPLC-high resolution mass spectrometry. Arch. Environ. Contam. Toxicol. 2015, 69, 525–534. [Google Scholar] [CrossRef]
- Speight, J.G. Environmental Organic Chemistry for Enginners, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 153–201. [Google Scholar]
- Kim, C.; Ryu, H.-D.; Chung, E.G.; Kim, Y. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. J. Chromatogr. B 2018, 1084, 158–165. [Google Scholar] [CrossRef]
- Licul-kucera, V.; Ladányi, M.; Hizsnyik, G.; Záray, G.; Mihucz, V.G. A filtration optimized on-line SPE-HPLC-MS/MS method for determination of three macrolide antibiotics dissolved and bound to suspended solids in surface water. Microchem. J. 2019, 148, 480–492. [Google Scholar] [CrossRef]
- Dougherty, J.A.; Swarzenski, P.W.; Dinicola, R.S.; Reinhard, M. Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty bay, Puget Sound, ashington. J. Environ. Qual. 2010, 39, 1173–1180. [Google Scholar] [CrossRef] [Green Version]
- Al Aukidly, M.; Verlicchi, P.; Jelic, A.; Petrovic, M.; Barceló, D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 2012, 438, 15–25. [Google Scholar] [CrossRef]
- Nebot, C.; Falcon, R.; Boyd, K.G.; Gibb, S.W. Introduction of human pharmaceuticals from wastewater treatment plants into the aquatic environment: A rural perspective. Environ. Sci. Pollut. Res. 2015, 22, 10559–10568. [Google Scholar] [CrossRef]
- Guibal, R.; Lissalde, S.; Brizard, Y.; Guibaud, G. Semi-continuous pharmaceutical and human tracer monitoring by POCIS sampling at the watershed-scale in an agricultural rural headwater river. J. Hazard. Mater. 2018, 360, 106–114. [Google Scholar] [CrossRef]
- Darwano, H.; Duy, S.V.; Sauvé, S. A new protocol for the analysis of pharmaceuticals, pesticides and hormones in sediments and suspended particulate matter from rivers and municipal wastewaters, Arch. Environ. Contam. Toxicol. 2014, 66, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Mokh, S.; Khatib, M.E.; Koubar, M.; Daher, Z.; Iskandarani, M.A. Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon. Sci. Total Environ. 2017, 609, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Ribeiro, C.; Tiritan, M.E.; Pereira, M.F.R.; Silva, A.M.T. Monitoring of the 17 EU watch list contaminants of emerging concern in the Ave and the Sousa Rivers. Sci. Total Environ. 2019, 649, 1083–1095. [Google Scholar] [CrossRef]
- Dolliver, H.; Gupta, S.; Noll, S. Antibiotic degradation during manure composting. J. Environ. Qual. 2008, 37, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-R.; Owens, G.; Kwon, S.-I.; So, K.-H.; Lee, D.-B.; Ok, Y.S. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011, 214, 163–174. [Google Scholar] [CrossRef]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.-H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- Mainero Rocca, L.; Gentili, A.; Pérez-Fernández, V.; Tomai, P. Veterinary drugs residues: A review of the latest analytical research on sample preparation and LC-MS based methods. Food Addit. Contam. A 2017, 34, 766–784. [Google Scholar] [CrossRef]
- Pozo, O.J.; Guerrero, C.; Sancho, J.V.; Ibáñez, M.; Pitarch, E.; Hogendoorn, E.; Hernández, F. Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2006, 1103, 83–93. [Google Scholar] [CrossRef]
- Ntzani, E.; Chondrogiorge, M.; Ntritsos, G.; Evangelou, E.; Tzoulaki, I. Literature review on epidemiological studies linking exposure to pesticides and health effect. EFSA Supporting Publ. 2013, 10, 497E. [Google Scholar] [CrossRef]
- Wolecki, D.; Carban, M.; Pazdro, K.; Mulkiewicz, E.; Stepnowski, P.; Kumirska, J. Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussel Mytilus edulis trossulus. Talanta 2019, 200, 316–323. [Google Scholar] [CrossRef]
- Narenderan, S.T.; Meyyanathan, S.N.; Karry, V.V.S.R. Experimental design in pesticide extraction methods: A review. Food Chem. 2019, 289, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Yoon, Y.S.; Kim, H.S.; Jeon, S.J.; Cole, E.; Lee, J.; Kho, Y.; Cho, Y.H. Distribution of fipronil in humans, and adverse health outcomes of in utero fipronil sulfone exposure in newborns. Int. J. Hyg. Envir. Heal. 2019, 222, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Pessah, I.N.; Lein, P.J.; Seegal, R.F.; Sagiv, S.K. Neurotoxicity of polychlorinated biphenyls and relat5ed organohalogens. Acta Neuropathol. 2019, 138, 363–387. [Google Scholar] [CrossRef] [PubMed]
- Seifrtová, M.; Nováková, L.; Lino, C.; Pena, A.; Solich, P. An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal. Chim. Acta 2009, 649, 158–179. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals; US Food and Drug Administration: Silver Spring, MD, USA, 2010.
- US Environmental Protection Agency. Literature Review of Contaminants in Livestock and Poultry Manure and Implications for Water Quality; US Environmental Protection Agency: Washington, DC, USA, 2013; EPA 820-R-13-002.
- Jaffrézic, A.; Jardé, E.; Soulier, A.; Carrera, L.; Marengue, E.; Cailleau, A.; Le Bot, B. Veterinary pharmaceutical contamination in mixed land use watersheds: From agricultural headwater to water monitoring watershed. Sci. Total Environ. 2017, 609, 992–1000. [Google Scholar] [CrossRef]
- Charuaud, L.; Jardé, E.; Jaffrézic, A.; Liotaud, M.; Goyat, Q.; Mercier, F.; Le Bot, B. Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. Sci. Total Environ. 2019, 66, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Gómez Pérez, M.L.; Romero-González, R.; Plaza-Bolaños, P.; Génin, E.; Vidal, J.L.M.; Frenich, A.G. Wide-scope analysis of pesticide and veterinary drug residues in meatmatrices by high resolution MS: Detection and identification using exactive-orbitrap. J. Mass Spectrom. 2014, 49, 27–36. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Bletsou, A.A.; Koulis, G.A.; Thomaidis, N.S. Qualitative multiresidue screening method for 143 veterinary drugs and pharmaceuticals in milk and fish tissue using liquid chromatography quadrupole-time-of flight mass spectrometry. J. Agric. Food Chem. 2015, 63, 4493–4508. [Google Scholar] [CrossRef]
- Masiá, A.; Saurez-Varela, M.M.; Gonzalez-Llopis, A.; Picó, Y. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta 2016, 936, 40–61. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Y.; Lu, S.; Yan, P.; Sui, Q. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Front Environ. Sci. Eng. 2016, 10, 2–12. [Google Scholar] [CrossRef]
- Kong, C.; Wang, Y.; Huang, Y.; Yu, H. Multiclass screening of >200 pharmaceutical and other residues in aquatic foods by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 5545–5553. [Google Scholar] [CrossRef] [PubMed]
- Brack, W.; Hollender, J.; López de Alda, M.; Müller, C.; Schulze, T.; Schymanski, E.; Slobodnik, J.; Krauss, M. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environ. Sci. Eur. 2019, 31, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, K.; Müller, A.; Singer, H.; Hollender, J. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 2019, 165, 114972–114984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnipseed, S.B.; Storey, J.M.; Wu, I.L.; Andersen, W.C.; Madson, M.R. Extended liquid chromatography high resolution mass spectrometry screening method for veterinary drug, pesticide and human pharmaceutical residues in aquaculture fish. Food Addict. Contam. A 2019, 36, 1501–1514. [Google Scholar] [CrossRef]
- Wilkowska, A.; Biziuk, M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011, 125, 803–812. [Google Scholar] [CrossRef]
- Rizzetti, T.M.; Kemmerich, M.; Martins, M.L.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC-MS/MS. Food Chem. 2016, 196, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Postigo, C.; López de Alda, M.J.; Barceló, D.; Ginebreda, A.; Garrido, T. Analysis of occurrence of selected medium to highly polar pesticides in groundwater of Catalonia (NE Spain): An approach based on on-line solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry detection. J. Hydrol. 2010, 383, 83–92. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Díaz-Cruz, M.S.; Barceló, D. Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Talanta 2010, 81, 355–366. [Google Scholar] [CrossRef]
- López-Serna, R.; Pérez, S.; Ginebreda, A.; Petrović, M.; Barceló, D. Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta 2010, 83, 410–424. [Google Scholar] [CrossRef]
- Pocurull, E.; Aguilar, C.; Borrull, F.; Marcé, R.M. On-line coupling of solid-phase extraction to gas chromatography with mass spectrometric detection to determine pesticides in water. J. Chromatogr. A 1998, 818, 85–93. [Google Scholar] [CrossRef]
- Chen, Z.; Megharaj, M.; Naidu, R. On-line solid phase extraction of pesticide residues in natural water, coupled with liquid chromatography and UV detection, using various sorbents. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 1779–1790. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Q.; Qu, G.-B.; Song, S.-J.; Sun, J.-T.; Shi, J.-B.; Jiang, G.-B. Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1281, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Panditi, V.R.; Batchu, S.R.; Gardinali, P.R. Online solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters. Anal. Bioanal. Chem. 2013, 405, 5953–5964. [Google Scholar] [CrossRef] [PubMed]
- Anumal, T.; Snyder, S.A. Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Talanta 2015, 132, 77–86. [Google Scholar] [CrossRef]
- Axel, M.; Ewelina, K.; Jenny-Maria, B.; Leif, K. An online SPE LC-MS/MS method for the analysisof antibiotics in environmental water. Environ. Sci. Pollut. Res. 2017, 24, 8692–8699. [Google Scholar] [CrossRef]
- Reemtsma, T.; Alder, L.; Ursula, B. A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry. J. Chromatogr. A 2013, 1271, 95–104. [Google Scholar] [CrossRef]
- Ripp, J. Analytical Detection Limit Guidance: Laboratory Guide for Determining Method Detection Limits; PUBL-TS-059-96; Wsiconsin Department of Natural Resources: Madison, WI, USA, 1996. [Google Scholar]
- US Environmental Protection Agency. Guidelines Establishing Test Procedures for the Analyses of Pollutants, Appendix B to Part 136-definition and Procedure for the Determination of Method Detection Limit rev. 2; U.S. Code of Federal Regulations: Washington, DC, USA, 2016.
- Ministry of Environment Republic of Korea. MoE Notification 2016-65, Standard Method for the Examination of Water Pollution; ES 04001.b; Ministry of Environment Republic of Korea: Sejong, Korea, 2016.
- Gulkowska, A.; Buerge, I.J.; Poiger, T. Online solid phase extraction LC-MS/MS method for the analysis of succinate dehydrogenase inhibitor fungicides and its applicability to surface water samples. Anal. Bioanal. Chem. 2014, 406, 6419–6427. [Google Scholar] [CrossRef]
- Chitescu, C.L.; Kaklamanos, G.; Nicolau, A.I.; Stolker, A.A.M.L. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian Territory. Sci. Total Environ. 2015, 532, 501–511. [Google Scholar] [CrossRef]
- Puig, P.; Alexander Tempeles, F.W.; Somsen, G.W.; de Jong, G.J.; Borrull, F.; Aguilar, C.; Calull, M. Use of large-volume sample stacking in on-line solid-phase extraction-capillary electrophoresis for improved sensitivity. Electrophoresis 2008, 29, 1339–1346. [Google Scholar] [CrossRef]
- Annesley, T.M. Ion suppression in mass spectrometry. Clin. Chem. 2003, 49, 1041–1044. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed; SANTE/11813/2017; European Commission: Brussels, Belgium, 2017. [Google Scholar]
Chemical Name | Therapeutic Class | Adduct | Precursor Ion (m/z) | Product Ion (m/z) | Retention Time (Min) | Internal Standard | |
---|---|---|---|---|---|---|---|
Ampicillin | Veterinary antibiotics | [M + H]+ | 350.12 | 160.04 | 106.06 | 9.33 | Ampicillin-d5 |
Ceftiofur | Veterinary antibiotics | [M + H]+ | 524.04 | 126.01 | 210.04 | 10.55 | |
Penicillin-G | Veterinary antibiotics | [M + H]+ | 335.11 | 160.04 | 176.07 | 10.99 | |
Clanobutin | Veterinary digestion simulating agent | [M + H]+ | 348.10 | 192.10 | 174.09 | 11.66 | Fenbendazole-d3 |
Dexamethasone | veterinary anti-inflammatory | [M + H]+ | 393.21 | 147.08 | 237.13 | 11.08 | |
Fenbendazole | Veterinary antibiotics | [M + H]+ | 300.08 | 268.05 | 159.04 | 11.45 | |
Flumequine | Veterinary antibiotics | [M + H]+ | 262.09 | 238.05 | 234.08 | 11.20 | |
Meloxicam | veterinary anti-inflammatory | [M + H]+ | 352.04 | 115.03 | 141.01 | 11.86 | |
Methabenzthiazuron | herbicide | [M + H]+ | 222.07 | 165.05 | 124.02 | 11.36 | |
Tiamulin | Veterinary antibiotics | [M + H]+ | 494.33 | 192.11 | 119.02 | 10.54 | |
Virginiamycin | Veterinary antibiotics | [M + Na]+ | 548.24 | 287.06 | 548.24 | 11.4 | |
Carbendazim | Fungicide | [M + H]+ | 192.08 | 160.05 | 132.06 | 8.93 | Lincomycin-d3 |
Lincomycin | Veterinary antibiotics | [M + H]+ | 407.22 | 126.13 | 359.22 | 8.92 | |
Azaperone | Veterinary sedative | [M + H]+ | 328.18 | 165.07 | 121.08 | 9.25 | Ofloxacin-d3 |
Marbofloxacin | Veterinary antibiotics | [M + H]+ | 363.15 | 277.06 | 205.04 | 9.16 | |
Orbifloxacin | Veterinary antibiotics | [M + H]+ | 396.15 | 295.11 | 352.16 | 9.44 | |
Sulfadiazine | Veterinary antibiotics | [M + H]+ | 251.06 | 156.01 | 96.06 | 9.44 | Sulfadiazine-13C6 |
Colchicine | Antigout, anti-inflammatory | [M + H]+ | 400.18 | 310.12 | 358.16 | 10.47 | Sulfadimethoxine-d6 |
Sulfadimethoxine | Veterinary antibiotics | [M + H]+ | 311.08 | 245.10 | 245.10 | 10.71 | |
Sulfaquinoxaline | Veterinary antibiotics | [M + H]+ | 301.08 | 156.01 | 146.07 | 10.75 | |
Chlortetracycline | Veterinary antibiotics | [M + H]+ | 479.12 | 154.05 | 444.08 | 9.77 | Sulfamethazine-13C6 |
Oxytetracycline | Veterinary antibiotics | [M + H]+ | 161.16 | 337.07 | 381.06 | 9.28 | |
Sulfamethazine | Veterinary antibiotics | [M + H]+ | 279.09 | 204.04 | 124.09 | 9.84 | |
Dimethoate | Insecticide | [M + H]+ | 230.01 | 170.97 | 170.97 | 10.38 | Sulfamethoxazole-d4 |
Doxycycline | Veterinary antibiotics | [M + H]+ | 445.16 | 428.13 | 410.12 | 9.93 | |
Sulfachloropyridazine | Veterinary antibiotics | [M + H]+ | 285.02 | 156.01 | 108.04 | 10.42 | |
Sulfamethoxazole | Veterinary antibiotics | [M + H]+ | 254.06 | 156.01 | 147.08 | 10.54 | |
Sulfathiazole | Veterinary antibiotics | [M + H]+ | 256.02 | 156.01 | 101.02 | 9.60 | Sulfathiazole-13C6 |
Altrenogest | Veterinary Synthetic progestin | [M + H]+ | 311.20 | 227.14 | 225.13 | 12.48 | Terbuthylazine-(ethyl-d5) |
Azoxystrobin | Fungicide | [M + H]+ | 404.12 | 344.10 | 329.08 | 12.28 | |
Boscalid | Fungicide | [M + H]+ | 343.04 | 307.06 | 272.09 | 12.36 | |
Flunixin | Veterinary anti-inflammatory | [M + H]+ | 297.08 | 279.07 | 277.08 | 12.22 | |
Decoquinate | Veterinary antiprotozoal | [M + H]+ | 418.26 | 372.22 | 250.07 | 14.33 | Triclocarban-d4 |
Imiprothrin | Fungicide | [M + H]+ | 319.17 | 123.12 | 135.12 | 12.54 | |
Mepanipyrim | Fungicide | [M + H]+ | 224.12 | 209.09 | 167.07 | 12.54 | |
Methoxyfenozide | Insecticide | [M + H]+ | 313.15 | 149.06 | 133.06 | 12.50 | |
Moxidectin | Veterinary endectocide | [M + H]+ | 640.38 | 199.11 | 145.06 | 16.77 | |
Narasin | Veterinary antibiotics | [M + H]+ | 787.50 | 407.24 | 255.16 | 19.19 | |
Clopidol | Veterinary antibiotics | [M + H]+ | 192.00 | 192.00 | 174.03 | 9.45 | Trimethoprim-d9 |
Ormetoprim | Veterinary antibiotics | [M + H]+ | 275.15 | 123.07 | 259.12 | 9.20 | |
Trimethoprim | Veterinary antibiotics | [M + H]+ | 291.15 | 230.12 | 123.07 | 9.08 |
Chemical Name | Ionization Form | Precursor Ion (m/z) | Retention Time (Min) |
---|---|---|---|
Ampicillin-d5 | [M + H]+ | 355.15 | 9.32 |
Fenbendazole-d3 | [M + H]+ | 303.10 | 11.47 |
Lincomycin-d3 | [M + H]+ | 410.24 | 8.91 |
Ofloxacin-d3 | [M + H]+ | 365.17 | 9.24 |
Sulfadiazine-13C6 | [M + H]+ | 257.08 | 9.40 |
Sulfadimethoxine-d6 | [M + H]+ | 317.12 | 10.68 |
Sulfamethazine-13C6 | [M + H]+ | 285.11 | 9.82 |
Sulfamethoxazole-d4 | [M + H]+ | 258.08 | 10.52 |
Sulfathiazole-13C6 | [M + H]+ | 262.04 | 9.57 |
Terbuthylazine-(ethyl-d5) | [M + H]+ | 235.15 | 12.08 |
Triclocarban-d4 | [M + H]+ | 319.01 | 13.34 |
Trimethoprim-d9 | [M + H]+ | 282.07 | 11.79 |
Equipment | UHPLC | Thermo Scientific Dionex ultimate 3000 (Thermo Scientific Fisher, Bremen, Germany) | |||||||
On-line SPE | EQuan Max Plus (Thermo Scientific, San Jose, CA, USA) | ||||||||
Column | UHPLC | Waters CORTECS UPLC C18 reverse-phase column (2.1 × 50 mm i.d. and 1.6 µm particle size, Waters Corp, Milford, MA, USA) | |||||||
On-line SPE | Two Hypersil GOLD aQ Columns (2.1 × 30 mm i.d. and 1.9 mµm particle size, Thermo Scientific Fisher, Bremen, Germany) | ||||||||
Temperature (°C) | Column | 35 | |||||||
Autosampler | 4 | ||||||||
Mobile phase | 0.1% formic acid in DW (A) | ||||||||
Acetonitrile (B) | |||||||||
Injection volume (mL) | 5 | ||||||||
Chromatography condition | UHPLC | Time (min) | 0 | 5.1 | 10 | 18.5 | 26 | 26.1 | 30 |
Flow rate (mL∙min−1) | 0.2 | ||||||||
A (%) | 98 | 98 | 35 | 35 | 2 | 98 | 98 | ||
B (%) | 2 | 2 | 65 | 65 | 98 | 2 | 2 | ||
On-line SPE | Time (min) | 0 | 5.1 | 5.2 | 27.3 | 27.4 | 30 | ||
Flow rate (mL∙min−1) | 1 | 1 | 0.1 | 0.1 | 1 | 1 | |||
A (%) | 98 | ||||||||
B (%) | 2 |
Chemical Name | Linearity (R2) | This Study | Literature | |
---|---|---|---|---|
MDL (ng∙L−1) | MQL (ng∙L−1) | MDL (ng∙L−1) | ||
Altrenogest | 0.9959 | 0.66 | 2.09 | |
Ampicillin | 0.9964 | 0.72 | 2.29 | 0.50 a |
Azaperone | 0.996 | 0.95 | 3.03 | |
Azoxystrobin | 0.9968 | 1.54 | 4.92 | |
Boscalid | 0.9984 | 0.76 | 2.41 | 0.50 b |
Carbendazim | 0.9939 | 0.94 | 3.01 | 2.70 c |
Cetiofur | 0.9974 | 0.57 | 1.82 | 0.20 d |
Chlortetracycline | 0.9964 | 0.32 | 1.02 | |
Clanobutin | 0.9999 | 0.59 | 1.88 | |
Clopidol | 0.9997 | 0.56 | 1.80 | |
Colchicine | 0.9937 | 0.44 | 1.40 | |
Decoquinate | 0.9958 | 1.35 | 4.31 | |
Dexamethasone | 0.9989 | 0.74 | 2.35 | |
Dimethoate | 0.9957 | 0.95 | 3.04 | |
Doxycycline | 0.9956 | 1.03 | 3.27 | 8.80 c |
Fenbendazole | 0.9990 | 0.70 | 2.23 | |
Flumequine | 0.9989 | 0.49 | 1.55 | 0.80 a, 3.20 c |
Flunixin | 0.9954 | 0.59 | 1.87 | |
Imiprothrin | 0.9992 | 1.09 | 3.46 | |
Lincomycin | 0.9986 | 0.44 | 1.40 | 1.81 e |
Marbofloxacin | 0.9939 | 0.51 | 1.62 | 0.80 a |
Meloxicam | 0.9991 | 0.81 | 2.57 | |
Mepanipyrim | 0.9933 | 1.30 | 4.15 | |
Methabenzthiazuron | 0.9992 | 0.92 | 2.93 | |
Methoxyfenozide | 0.9968 | 1.13 | 3.60 | |
Moxidectin | 0.9983 | 1.72 | 5.49 | |
Narasin | 0.9967 | 0.90 | 2.86 | |
Orbifloxacin | 0.9963 | 1.30 | 4.13 | |
Ormetoprim | 0.9921 | 0.39 | 1.23 | |
Oxytetracycline | 0.9929 | 0.51 | 1.63 | 8.00 b |
Penicillin-G | 0.9967 | 0.83 | 2.64 | 1.10 a |
Sulfachloropyridazine | 0.9987 | 0.36 | 1.16 | 5.40 e |
Sulfadiazine | 0.9946 | 1.59 | 5.07 | 7.91 e, 2.3 b |
Sulfadimethoxine | 0.9976 | 0.48 | 1.53 | 3.01 e, 3.4 b |
Sulfamethazine | 0.9978 | 0.52 | 1.66 | 1.32 e, 1.0 b |
Sulfamethoxazole | 0.9983 | 0.89 | 2.82 | 4.60 e |
Sulfaquinoxaline | 0.9968 | 0.67 | 2.15 | 3.4 b |
Sulfathiazole | 0.9975 | 1.07 | 3.41 | 6.06 e |
Tiamulin | 0.9917 | 0.47 | 1.49 | 1.6 b |
Trimethoprim | 0.9954 | 0.44 | 1.41 | 1.58 e, 6.5 b |
Virginiamycin | 0.9991 | 0.72 | 2.30 |
Chemical Name | Precision (n = 7) a | |||||
---|---|---|---|---|---|---|
At 10 ng∙L−1 | At 50 ng∙L−1 | At 500 ng∙L−1 | ||||
Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | |
Altrenogest | 102 ± 2.09 | 2.06 | 91.2 ± 3.42 | 3.75 | 86.66 ± 2.85 | 3.29 |
Ampicillin | 117 ± 2.3 | 1.96 | 82.86 ± 0.52 | 0.63 | 97.6 ± 1.02 | 1.05 |
Azaperone | 85.2 ± 3.03 | 3.56 | 104 ± 2.84 | 2.73 | 84.8 ± 2.13 | 2.51 |
Azoxystrobin | 89.77 ± 4.92 | 5.48 | 98.2 ± 1.96 | 2.00 | 102 ± 2.97 | 2.92 |
Boscalid | 102 ± 2.41 | 2.38 | 102 ± 1.38 | 1.35 | 97.3 ± 2.53 | 2.60 |
Carbendazim | 95.0 ± 3.01 | 3.17 | 82.8 ± 1.04 | 1.25 | 95.8 ± 4.62 | 4.82 |
Cetiofur | 100 ± 1.82 | 1.82 | 101 ± 1.76 | 1.74 | 101 ± 1.65 | 1.65 |
Chlortetracycline | 116 ± 1.02 | 0.88 | 92.6 ± 0.50 | 0.54 | 100 ± 0.85 | 0.84 |
Clanobutin | 96.3 ± 1.88 | 1.95 | 86.9 ± 2.42 | 2.79 | 103 ± 1.17 | 1.14 |
Clopidol | 95.8 ± 1.80 | 1.88 | 102 ± 2.41 | 2.36 | 99.0 ± 3.20 | 3.23 |
Colchicine | 97.1 ± 1.40 | 1.44 | 95.9 ± 2.71 | 2.83 | 117 ± 3.58 | 3.06 |
Decoquinate | 97.0 ± 4.31 | 4.44 | 101 ± 2.44 | 2.42 | 81.9 ± 1.97 | 2.40 |
Dexamethasone | 88.5 ± 2.35 | 2.66 | 81.6 ± 1.16 | 1.42 | 98.2 ± 1.23 | 1.25 |
Dimethoate | 112 ± 3.04 | 2.73 | 97.6 ± 2.61 | 2.67 | 117 ± 2.66 | 2.28 |
Doxycycline | 95.4 ± 3.27 | 3.42 | 101 ± 0.76 | 0.75 | 100 ± 1.86 | 1.86 |
Fenbendazole | 89.4 ± 2.23 | 2.50 | 100 ± 1.00 | 1.00 | 109 ± 0.70 | 0.65 |
Flumequine | 95.7 ± 1.54 | 1.61 | 93.9 ± 2.75 | 2.93 | 112 ± 2.37 | 2.11 |
Flunixin | 96.7 ± 1.87 | 1.94 | 109 ± 3.51 | 3.23 | 102 ± 3.94 | 3.86 |
Imiprothrin | 99.3 ± 3.46 | 3.49 | 100 ± 1.61 | 1.61 | 99.7 ± 2.14 | 2.15 |
Lincomycin | 93.4 ± 1.40 | 1.49 | 96.5 ± 0.39 | 0.40 | 96.8 ± 0.75 | 0.78 |
Marbofloxacin | 80.46 ± 1.62 | 2.01 | 92.47 ± 1.95 | 2.11 | 99.2 ± 1.75 | 1.76 |
Meloxicam | 96.8 ± 2.57 | 2.66 | 94.7 ± 1.70 | 1.79 | 107 ± 1.84 | 1.73 |
Mepanipyrim | 95.33 ± 4.15 | 4.36 | 94.8 ± 1.65 | 1.74 | 89.2 ± 2.65 | 2.97 |
Methabenzthiazuron | 92.6 ± 2.93 | 3.16 | 96.7 ± 3.72 | 3.85 | 102 ± 1.95 | 1.91 |
Methoxyfenozide | 93.8 ± 3.60 | 3.83 | 98.0 ± 2.15 | 2.19 | 103 ± 1.81 | 1.75 |
Moxidectin | 97.4 ± 5.49 | 5.64 | 101 ± 2.16 | 2.14 | 99.39 ± 2.87 | 2.89 |
Narasin | 94.2 ± 2.86 | 3.04 | 84.2 ± 1.51 | 1.80 | 103 ± 3.90 | 3.77 |
Orbifloxacin | 91.6 ± 4.13 | 4.50 | 101 ± 0.66 | 0.65 | 101 ± 0.60 | 0.60 |
Ormetoprim | 99.1 ± 1.23 | 1.24 | 95.8 ± 0.85 | 0.88 | 92.7 ± 1.98 | 2.14 |
Oxytetracycline | 106 ± 1.63 | 1.54 | 89.1 ± 0.55 | 0.62 | 91.9 ± 0.81 | 0.88 |
Penicillin-G | 101 ± 2.64 | 2.60 | 95.5 ± 2.89 | 3.03 | 97.7 ± 3.08 | 3.15 |
Sulfachloropyridazine | 93.3 ± 1.16 | 1.24 | 103 ± 1.04 | 1.01 | 99.4 ± 1.20 | 1.20 |
Sulfadiazine | 93.6 ± 0.51 | 5.42 | 98.86 ± 2.37 | 2.40 | 100.6 ± 1.58 | 1.57 |
Sulfadimethoxine | 91.8 ± 1.53 | 1.67 | 94.36 ± 1.40 | 1.49 | 110 ± 1.33 | 1.21 |
Sulfamethazine | 94.9 ± 1.66 | 1.77 | 97.8 ± 1.17 | 1.19 | 101 ± 1.09 | 1.08 |
Sulfamethoxazole | 93.7 ± 2.82 | 3.01 | 99.2 ± 2.72 | 2.74 | 109 ± 2.54 | 2.33 |
Sulfaquinoxaline | 97.5 ± 2.15 | 2.20 | 101 ± 1.77 | 1.75 | 101 ± 1.44 | 1.42 |
Sulfathiazole | 103 ± 3.41 | 3.31 | 101 ± 0.59 | 0.59 | 99.9 ± 2.20 | 2.20 |
Tiamulin | 110 ± 1.49 | 1.35 | 96.8 ± 1.18 | 1.22 | 104 ± 0.52 | 0.50 |
Trimethoprim | 109 ± 1.41 | 1.29 | 95.1 ± 0.54 | 0.57 | 86.6 ± 0.63 | 0.73 |
Virginiamycin | 82.9 ± 2.30 | 2.77 | 108 ± 1.37 | 1.27 | 103 ± 2.66 | 2.58 |
Chemical Name | Accuracy (n = 3) a | |||||||
---|---|---|---|---|---|---|---|---|
Groundwater (at 50 ng∙L−1) | Groundwater (at 500 ng∙L−1) | Surface Water (at 50 ng∙L−1) | River Water (at 500 ng L−1) | |||||
Relative Recovery (%) | CV (%) | Relative Recovery (%) | CV (%) | Relative Recovery (%) | CV(%) | Relative Recovery (%) | CV (%) | |
Altrenogest | 97 ± 6.7 | 7.0 | 82± 4.3 | 5.2 | 95 ± 5.3 | 5.5 | 90 ± 1.6 | 1.8 |
Ampicillin | 95 ± 0.37 | 0.38 | 110 ± 3.5 | 3.2 | 89 ± 1.7 | 1.9 | 94 ± 4.5 | 4.7 |
Azaperone | 96 ± 7.9 | 8.2 | 98 ± 7.7 | 7.9 | 86 ± 4.4 | 5.2 | 90 ± 1.7 | 1.9 |
Azoxystrobin | 100 ± 4.5 | 4.5 | 110 ± 2.5 | 2.2 | 100 ± 2.9 | 2.9 | 100 ± 5.8 | 5.6 |
Boscalid | 110 ± 1.2 | 1.1 | 89 ± 2.2 | 2.4 | 86 ± 2.1 | 3.1 | 110 ± 7.5 | 6.9 |
Carbendazim | 110 ± 3.9 | 3.7 | 110 ± 2.4 | 2.1 | 91 ± 3.2 | 3.5 | 86 ± 3.8 | 4.4 |
Cetiofur | 98 ± 5.2 | 5.3 | 100 ± 1.8 | 1.7 | 87 ± 7.5 | 8.6 | 89 ± 8.7 | 9.8 |
Chlortetracycline | 94 ± 6.1 | 6.5 | 97 ± 6.5 | 6.7 | 97 ± 5.2 | 5.3 | 95 ± 1.7 | 1.8 |
Clanobutin | 100 ± 3.0 | 3.0 | 100 ± 1.3 | 1.3 | 99 ± 6.0 | 6.1 | 94 ± 4.6 | 4.9 |
Clopidol | 99 ± 3.0 | 3.0 | 100 ± 6.4 | 6.2 | 100 ± 4.2 | 4.1 | 95 ± 4.4 | 4.7 |
Colchicine | 93 ± 0.64 | 0.68 | 96 ± 6.3 | 6.6 | 90 ± 5.1 | 5.7 | 91 ± 6.8 | 7.5 |
Decoquinate | 92 ± 0.21 | 0.23 | 100 ± 5.5 | 5.3 | 94 ± 3.3 | 3.5 | 86 ± 7.4 | 8.6 |
Dexamethasone | 88 ± 4.7 | 5.4 | 100 ± 5.7 | 5.6 | 110 ± 4.3 | 4.1 | 80 ± 2.9 | 3.6 |
Dimethoate | 100 ± 6.9 | 6.9 | 93± 2.0 | 2.2 | 91 ± 9.1 | 10 | 92 ± 5.3 | 5.7 |
Doxycycline | 94 ± 4.9 | 5.2 | 97 ± 5.5 | 5.6 | 99 ± 5.4 | 5.5 | 91 ± 3.8 | 4.1 |
Fenbendazole | 100 ± 1.6 | 1.6 | 99 ± 1.1 | 1.1 | 100 ± 4.6 | 4.5 | 100 ± 2.2 | 2.0 |
Flumequine | 99 ± 1.1 | 1.1 | 99 ± 2.9 | 2.9 | 110 ± 6.4 | 5.8 | 93 ± 3.1 | 3.3 |
Flunixin | 110 ± 2.5 | 2.3 | 89 ± 3.3 | 3.7 | 93 ± 3.1 | 3.3 | 91 ± 7.0 | 7.7 |
Imiprothrin | 100 ± 1.3 | 1.2 | 86 ± 4.7 | 5.4 | 85 ± 6.1 | 7.1 | 98 ± 8.8 | 8.8 |
Lincomycin | 92 ± 1.2 | 1.3 | 99 ± 0.77 | 0.8 | 91 ± 1.8 | 2.0 | 100 ± 1.3 | 1.3 |
Marbofloxacin | 95 ± 5.7 | 6.0 | 120 ± 2.1 | 1.7 | 70 ± 3.7 | 5.2 | 88 ± 4.1 | 4.7 |
Meloxicam | 88 ± 6.7 | 7.6 | 91 ± 2.3 | 2.6 | 97 ± 10.5 | 11 | 100 ± 3.9 | 3.8 |
Mepanipyrim | 99 ± 6.1 | 6.2 | 93 ± 3.2 | 3.5 | 97 ± 2.5 | 2.6 | 100 ± 8.8 | 8.8 |
Methabenzthiazuron | 110 ± 6.7 | 5.9 | 110 ± 2.0 | 1.7 | 98 ± 4.2 | 4.3 | 80 ± 3.8 | 4.8 |
Methoxyfenozide | 91 ± 2.5 | 2.8 | 79 ± 3.1 | 3.9 | 88 ± 5.2 | 5.9 | 83 ± 2.5 | 3.1 |
Moxidectin | 94 ± 1.2 | 1.3 | 95 ± 2.3 | 2.4 | 100 ± 0.7 | 0.7 | 93 ± 4.0 | 4.3 |
Narasin | 110 ± 2.8 | 2.6 | 110 ± 4.5 | 4.3 | 88 ± 1.6 | 1.8 | 85 ± 3.2 | 3.7 |
Orbifloxacin | 100 ± 8.5 | 8.2 | 110 ± 1.7 | 1.5 | 84 ± 2.7 | 3.2 | 84 ± 1.5 | 1.8 |
Ormetoprim | 91 ± 2.4 | 2.7 | 100 ± 4.2 | 4.2 | 87 ± 5.0 | 5.8 | 97 ± 4.0 | 4.1 |
Oxytetracycline | 110 ± 3.1 | 3.0 | 99 ± 2.1 | 2.1 | 92 ± 1.3 | 1.4 | 99 ± 2.3 | 2.3 |
Penicillin-G | 100 ± 2.9 | 2.9 | 98 ± 8.1 | 8.3 | 83 ± 4.7 | 5.7 | 93 ± 4.3 | 4.7 |
Sulfachloropyridazine | 96 ± 7.0 | 7.2 | 97 ± 1.1 | 1.2 | 93 ± 5.7 | 6.2 | 86 ± 5.3 | 6.1 |
Sulfadiazine | 89 ± 3.9 | 4.4 | 110 ± 3.0 | 2.8 | 94 ± 4.7 | 4.9 | 95 ± 3.2 | 3.3 |
Sulfadimethoxine | 100 ± 9.5 | 9.5 | 100 ± 1.7 | 1.7 | 91 ± 4.6 | 5.1 | 92 ± 3.1 | 3.4 |
Sulfamethazine | 89 ± 1.7 | 1.9 | 93 ± 1.7 | 1.8 | 88 ± 7.7 | 8.7 | 100 ± 1.1 | 1.1 |
Sulfamethoxazole | 91 ± 2.7 | 3.0 | 93 ± 2.3 | 2.5 | 93 ± 5.9 | 6.4 | 93 ± 3.8 | 4.1 |
sulfaquinoxaline | 99 ± 9.0 | 9.1 | 95 ± 1.7 | 1.7 | 87 ± 4.5 | 5.2 | 87 ± 2.8 | 3.2 |
Sulfathiazole | 100 ± 0.17 | 0.17 | 97 ± 3.5 | 3.6 | 99 ± 2.6 | 2.6 | 110 ± 7.8 | 6.9 |
Tiamulin | 95 ± 5.0 | 5.3 | 85 ± 6.2 | 7.3 | 94 ± 6.0 | 6.4 | 110 ± 5.3 | 4.8 |
Trimethoprim | 120 ± 2.5 | 2.1 | 110 ± 1.1 | 1.0 | 90 ± 2.3 | 2.5 | 80 ± 0.9 | 1.1 |
Virginiamycin | 100 ± 6.6 | 6.4 | 98 ± 2.5 | 2.5 | 100 ± 5.7 | 5.6 | 99 ± 0.52 | 0.5 |
Chemical Name | Mean ± Standard Deviation, n = 3 (ng∙L−1) | |
---|---|---|
Groundwater | River Water | |
Altrenogest | 12.92 ± 0.49 | 7.84 ± 0.20 |
Ampicillin | ND | 11.03 ± 1.13 |
Azaperone | 7.20 ± 9.69 | <MQL |
Azoxystrobin | <MQL | <MQL |
Carbendazim | <MQL | <MQL |
Chlortetracycline | 8.32 ± 4.27 | ND |
Clanobutin | ND | 8.50 ± 0.34 |
Clopidol | ND | 30.41 ± 1.79 |
Colchicine | <MQL | <MQL |
Decoquinate | 71.46 ± 28.77 | 22.96 ± 0.74 |
Dimethoate | ND | <MQL |
Doxycycline | 34.01 ± 12.55 | 42.98 ± 3.56 |
Fenbendazole | 0.37 ± 0.17 | 0.59 ± 0.56 |
Flumequine | <MQL | <MQL |
Flunixin | 12.66 ± 0.75 | 19.08 ± 1.40 |
Imiprothrin | 5.34 ± 7.37 | ND |
Lincomycin | ND | 17.63 ± 0.42 |
Marbofloxacin | <MQL | 59.95 ± 4.15 |
Meloxicam | ND | <MQL |
Mepanipyrim | <MQL | ND |
Methabenzthiazuron | ND | ND |
Methoxyfenozide | <MQL | <MQL |
Moxidectin | 49.87 ± 27.15 | ND |
Narasin | <MQL | <MQL |
Orbifloxacin | ND | <MQL |
Ormetoprim | <MQL | <MQL |
Oxytetracycline | ND | 34.25 ± 5.93 |
Penicillin-G | ND | 13.45 ± 0.75 |
Sulfachloropyridazine | ND | 49.85 ± 2.13 |
Sulfadimethoxine | ND | <MQL |
Sulfamethazine | ND | 24.77 ± 1.07 |
Sulfamethoxazole | ND | 33.07 ± 0.70 |
sulfaquinoxaline | ND | 2.25 ± 1.15 |
Sulfathiazole | ND | 103.07 ± 4.37 |
Tiamulin | ND | 12.52 ± 0.28 |
Trimethoprim | 10.33 ± 0.20 | 34.51 ± 0.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-J.; Kim, C.; Ryu, H.-D.; Chung, E.G.; Shin, D.; Lee, J.K. Simultaneous Determination of Pesticides and Veterinary Pharmaceuticals in Environmental Water Samples by UHPLC–Quadrupole-Orbitrap HRMS Combined with On-Line Solid-Phase Extraction. Separations 2020, 7, 14. https://doi.org/10.3390/separations7010014
Lee H-J, Kim C, Ryu H-D, Chung EG, Shin D, Lee JK. Simultaneous Determination of Pesticides and Veterinary Pharmaceuticals in Environmental Water Samples by UHPLC–Quadrupole-Orbitrap HRMS Combined with On-Line Solid-Phase Extraction. Separations. 2020; 7(1):14. https://doi.org/10.3390/separations7010014
Chicago/Turabian StyleLee, Hyun-Jeoung, Chansik Kim, Hong-Duck Ryu, Eu Gene Chung, Dongseok Shin, and Jae Kwan Lee. 2020. "Simultaneous Determination of Pesticides and Veterinary Pharmaceuticals in Environmental Water Samples by UHPLC–Quadrupole-Orbitrap HRMS Combined with On-Line Solid-Phase Extraction" Separations 7, no. 1: 14. https://doi.org/10.3390/separations7010014
APA StyleLee, H. -J., Kim, C., Ryu, H. -D., Chung, E. G., Shin, D., & Lee, J. K. (2020). Simultaneous Determination of Pesticides and Veterinary Pharmaceuticals in Environmental Water Samples by UHPLC–Quadrupole-Orbitrap HRMS Combined with On-Line Solid-Phase Extraction. Separations, 7(1), 14. https://doi.org/10.3390/separations7010014