Evaluation of Inter-Apparatus Separation Method Transferability in Countercurrent Chromatography and Centrifugal Partition Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Equipment
2.3. Methods
2.3.1. Preparation of the Biphasic Liquid Systems and Feed Samples
2.3.2. Pulse Injection Experiments
3. Results
3.1. Approach of Column Characterization-Based Separation Method Transferability
3.2. Column Characterization
3.2.1. Stationary Phase Retention
3.2.2. Column Efficiency and Resolution of the Columns
3.3. Short-Cut Approach for Evaluation of Separation Method Transferability
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ito, Y. High-speed countercurrent chromatography. Nature 1987, 326, 419–420. [Google Scholar] [CrossRef]
- Ito, Y. Origin and evolution of the coil planet centrifuge: A personal reflection of my 40 years of ccc research and development. Sep. Purif. Rev. 2005, 34, 131–154. [Google Scholar] [CrossRef]
- Berthod, A.; Faure, K. Separations with a Liquid Stationary Phase: Countercurrent Chromatography or Centrifugal Partition Chromatography. In Analytical Separation Science; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015. [Google Scholar]
- Berthod, A. Countercurrent Chromatography; Elsevier: Amsterdam, The Netherlands, 2002; Volume 38. [Google Scholar]
- Foucault, A.P. Centrifugal Partition Chromatography; Chromatographic Science Series; M: Dekker: New York, NY, USA, 1995; Volume 68. [Google Scholar]
- Schmidt-Traub, H.; Schulte, M.; Seidel-Morgenstern, A. Preparative Chromatography, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Das Neves Costa, F.; Hubert, J.; Borie, N.; Kotland, A.; Hewitson, P.; Ignatova, S.; Renault, J.H. Schinus terebinthifolius countercurrent chromatography (part iii): Method transfer from small countercurrent chromatography column to preparative centrifugal partition chromatography ones as a part of method development. J. Chromatogr. A 2017, 1487, 77–82. [Google Scholar] [CrossRef]
- Sutherland, I.A.; Audo, G.; Bourton, E.; Couillard, F.; Fisher, D.; Garrard, I.; Hewitson, P.; Intes, O. Rapid linear scale-up of a protein separation by centrifugal partition chromatography. J. Chromatogr. A 2008, 1190, 57–62. [Google Scholar] [CrossRef]
- Wood, P.; Ignatova, S.; Janaway, L.; Keay, D.; Hawes, D.; Garrard, I.; Sutherland, I.A. Counter-current chromatography separation scaled up from an analytical column to a production column. J. Chromatogr. A 2007, 1151, 25–30. [Google Scholar] [CrossRef]
- Das Neves Costa, F.; Vieira, M.N.; Garrard, I.; Hewitson, P.; Jerz, G.; Leitão, G.G.; Ignatova, S. Schinus terebinthifolius countercurrent chromatography (part ii): Intra-apparatus scale-up and inter-apparatus method transfer. J. Chromatogr. A 2016, 1466, 76–83. [Google Scholar] [CrossRef]
- Sutherland, I.; Hewitson, P.; Ignatova, S. Scale-up of counter-current chromatography: Demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale. J. Chromatogr. A 2009, 1216, 8787–8792. [Google Scholar] [CrossRef]
- Chollet, S.; Marchal, L.; Jeremy, M.; Renault, J.H.; Legrand, J.; Foucault, A. Methodology for optimally sized centrifugal partition chromatography columns. J. Chromatogr. A 2015, 1388, 174–183. [Google Scholar] [CrossRef]
- Bouju, E.; Berthod, A.; Faure, K. Scale-up in centrifugal partition chromatography: The “free-space between peaks” method. J. Chromatogr. A 2015, 1409, 70–78. [Google Scholar] [CrossRef]
- Fumat, N.; Berthod, A.; Faure, K. Effect of operating parameters on a centrifugal partition chromatography separation. J. Chromatogr. A 2016, 1474, 47–58. [Google Scholar] [CrossRef]
- Goll, J.; Audo, G.; Minceva, M. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume. J. Chromatogr. A 2015, 1406, 129–135. [Google Scholar] [CrossRef]
- Schwienheer, C.; Merz, J.; Schembecker, G. Investigation, comparison and design of chambers used in centrifugal partition chromatography on the basis of flow pattern and separation experiments. J. Chromatogr. A 2015, 1390, 39–49. [Google Scholar] [CrossRef]
- Roehrer, S.; Minceva, M. Characterization of a centrifugal partition chromatographic column with spherical cell design. Chem. Eng. Res. Des. 2019, 143, 180–189. [Google Scholar] [CrossRef]
- Peng, A.; Hewitson, P.; Sutherland, I.; Chen, L.; Ignatova, S. The effect of increasing centrifugal acceleration/force and flow rate for varying column aspect ratios on separation efficiency in counter-current chromatography. J. Chromatogr. A 2018, 1581–1582, 80–90. [Google Scholar] [CrossRef]
- Van Buel, M.; Van Halsema, F.; Van der Wielen, L.; Luyben, K. Flow regimes in centrifugal partition chromatography. AIChE J. 1998, 44, 1356–1362. [Google Scholar] [CrossRef]
- Marchal, L.; Foucaul, A.; Patissier, G.; Rosant, J.M.; Legrand, J. Influence of flow patterns on chromatographic efficiency in centrifugal partition chromatography. J. Chromatogr. A 2000, 869, 339–352. [Google Scholar] [CrossRef]
- Marchal, L.; Legrand, J.; Foucault, A. Mass transport and flow regimes in centrifugal partition chromatography. AIChE J. 2002, 48, 1692–1704. [Google Scholar] [CrossRef]
- Adelmann, S.; Baldhoff, T.; Koepcke, B.; Schembecker, G. Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives. J. Chromatogr. A 2013, 1274, 54–64. [Google Scholar] [CrossRef]
- Foucault, A.P.; Frias, E.C.; Bordier, C.G.; Goffic, F.L. Centrifugal partition chromatography: Stability of various biphasic systems and pertinence of the “stoke’s model” to describe the influence of the centrifugal field upon the efficiency. J. Liq. Chromatogr. 1994, 17, 1–17. [Google Scholar] [CrossRef]
- Adelmann, S.; Schembecker, G. Influence of physical properties and operating parameters on hydrodynamics in centrifugal partition chromatography. J. Chromatogr. A 2011, 1218, 5401–5413. [Google Scholar] [CrossRef]
- Couillard, F. Connecting channels and cells for centrifugal partition chromatographs. Wo 2009/066014 a1, 28 May 2009. [Google Scholar]
- Marchal, L.; Intes, O.; Foucault, A.; Legrand, J.; Nuzillard, J.-M.; Renault, J.-H. Rational improvement of centrifugal partition chromatographic settings for the production of 5-n-alkylresorcinols from wheat bran lipid extract. J. Chromatogr. A 2003, 1005, 51–62. [Google Scholar] [CrossRef]
- Peng, A.; Hewitson, P.; Sutherland, I.; Chen, L.; Ignatova, S. How changes in column geometry and packing ratio can increase sample load and throughput by a factor of fifty in counter-current chromatography. J. Chromatogr. A 2018, 1580, 120–125. [Google Scholar] [CrossRef]
- Guiochon, G.; Felinger, A.; Shirazi, D.G.; Katti, A.M. Fundamentals of Preparative and Nonlinear Chromatography; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Nicoud, R.-M. Chromatographic Processes; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Martin, A.J.P.; Synge, R.L.M. A new form of chromatogram employing two liquid phases. A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem. J. 1941, 35, 1358–1368. [Google Scholar] [CrossRef]
- Kostanian, A.E. Modelling counter-current chromatography: A chemical engineering perspective. J. Chromatogr. A 2002, 973, 39–46. [Google Scholar] [CrossRef]
- Kostanyan, A.E. General regularities of liquid chromatography and countercurrent extraction. Found. Chem. Eng. 2006, 40, 587–593. [Google Scholar] [CrossRef]
- Ignatova, S.; Sutherland, I. A fast, effective method of characterizing new phase systems in ccc. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1551–1564. [Google Scholar] [CrossRef]
- Morley, R.; Minceva, M. Unpublished work. 2018. [Google Scholar]
- He, C.H.; Zhao, C.X. Retention of the stationary phase for high-speed countercurrent chromatography. AIChE J. 2007, 53, 1460–1471. [Google Scholar] [CrossRef]
- Du, Q.Z.; Wu, C.J.; Qian, G.J.; Wu, P.D.; Ito, Y. Relationship between the flow-rate of the mobile phase and retention of the stationary phase in counter-current chromatography. J. Chromatogr. A 1999, 835, 231–235. [Google Scholar] [CrossRef]
- Sutherland, I.; Du, Q.; Wood, P. The relationship between retention, linear flow, and density difference in countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1669–1683. [Google Scholar] [CrossRef]
- Foucault, A.; Bousquet, O.; Le Goffic, F. Importance of the parameter vm/vc in countercurrent chromatography: Tentative comparison between instrument designs. J. Liq. Chromatogr. 1992, 15, 2691–2706. [Google Scholar] [CrossRef]
- Sutherland, I.A.; Booth, A.J.; Brown, L.; Kemp, B.; Kidwell, H.; Games, D.; Graham, A.S.; Guillon, G.G.; Hawes, D.; Hayes, M.; et al. Industrial scale-up of countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1533–1553. [Google Scholar] [CrossRef]
- Wood, P.L.; Hawes, D.; Janaway, L.; Sutherland, I.A. Stationary phase retention in ccc: Modelling the j-type centrifuge as a constant pressure drop pump. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1373–1396. [Google Scholar] [CrossRef]
- Kotland, A.; Chollet, S.; Autret, J.M.; Diard, C.; Marchal, L.; Renault, J.H. Modeling ph-zone refining countercurrent chromatography: A dynamic approach. J. Chromatogr. A 2015, 1391, 80–87. [Google Scholar] [CrossRef]
- Berthod, A.; Faure, K. Revisiting resolution in hydrodynamic countercurrent chromatography: Tubing bore effect. J. Chromatogr. A 2015, 1390, 71–77. [Google Scholar] [CrossRef]
- Berthod, A.; Bully, M. High-speed countercurrent chromatography used for alkylbenzene liquid-liquid partition coefficient determination. Anal. Chem. 1991, 63, 2508–2512. [Google Scholar] [CrossRef]
- Bousquet, O.; Foucault, A.P.; Goffic, F.L. Efficiency and resolution in countercurrrent chromatography. J. Liq. Chromatogr. 1991, 14, 3343–3363. [Google Scholar] [CrossRef]
- Völkl, J.; Arlt, W.; Minceva, M. Theoretical study of sequential centrifugal partition chromatography. AIChE J. 2013, 59, 241–249. [Google Scholar] [CrossRef]
- Goll, J.; Minceva, M. Continuous fractionation of multicomponent mixtures with sequential centrifugal partition chromatography. AIChE J. 2017, 63, 1659–1673. [Google Scholar] [CrossRef]
- Morley, R.; Minceva, M. Operating mode selection for the separation of intermediately-eluting components with countercurrent and centrifugal partition chromatography. J. Chromatogr. A 2019. [Google Scholar] [CrossRef]
Column Name | Acronym | Column Type | Cell Type | No. of Cells | |
---|---|---|---|---|---|
DE Mini Centrifuge | CCC | hydrodynamic | - | 18.2 | - |
SCPC 250 | CPC 1800 | hydrostatic | twin-cells | 250 (182) * | 1800 |
CPC 250 | CPC 864 | hydrostatic | twin-cells | 250 (242) * | 864 |
CPC 250 PRO SPECIAL BIO Version | CPE 240 | hydrostatic | twin-cells | 250 (244) * | 240 |
CPC 250 PRO SC prototype | CPE 196 spherical cells | hydrostatic | spherical cells | 250 (240) * | 196 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roehrer, S.; Minceva, M. Evaluation of Inter-Apparatus Separation Method Transferability in Countercurrent Chromatography and Centrifugal Partition Chromatography. Separations 2019, 6, 36. https://doi.org/10.3390/separations6030036
Roehrer S, Minceva M. Evaluation of Inter-Apparatus Separation Method Transferability in Countercurrent Chromatography and Centrifugal Partition Chromatography. Separations. 2019; 6(3):36. https://doi.org/10.3390/separations6030036
Chicago/Turabian StyleRoehrer, Simon, and Mirjana Minceva. 2019. "Evaluation of Inter-Apparatus Separation Method Transferability in Countercurrent Chromatography and Centrifugal Partition Chromatography" Separations 6, no. 3: 36. https://doi.org/10.3390/separations6030036
APA StyleRoehrer, S., & Minceva, M. (2019). Evaluation of Inter-Apparatus Separation Method Transferability in Countercurrent Chromatography and Centrifugal Partition Chromatography. Separations, 6(3), 36. https://doi.org/10.3390/separations6030036