Chemical Composition, Chemometric Analysis, and Sensory Profile of Santolina chamaecyparissus L. (Asteraceae) Essential Oil: Insights from a Case Study in Serbia and Literature-Based Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil Isolation
2.3. Chemical Analysis
2.4. Chemometric Analysis
2.4.1. Quantitative Structure–Retention Relationship (QSRR) Analysis
2.4.2. Artificial Neural Network (ANN)
2.4.3. Global Sensitivity Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of S. chamaecyparissus Essential Oil
3.2. Chemometric Analysis of S. chamaecyparissus Essential Oil
3.3. Sensory Analysis of S. chamaecyparissus Essential Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
BUNS | Botanical Collections at the University of Novi Sad |
GA | Genetic Algorithm |
GC–MS | Gas Chromatography–Mass Spectrometry |
IFVCNS | Institute of Field and Vegetable Crops Novi Sad |
MLP | Multi-Layer Perceptron |
QSRR | quantitative structure–retention relationship |
References
- Tundis, R.; Loizzo, M.R. A review of the traditional uses, phytochemistry and biological activities of the genus Santolina. Planta Med. 2018, 84, 627–637. [Google Scholar] [CrossRef]
- Labed, F.; Masullo, M.; Cerulli, A.; Benayache, F.; Benayache, S.; Piacente, S. Chemical constituents of the aerial parts of Santolina chamaecyparissus and evaluation of their antioxidant activity. Nat. Prod. Commun. 2017, 12, 1605–1608. [Google Scholar] [CrossRef]
- Balkrishna, A.; Prajapati, U.B.; Srivastava, A.; Mishra, R. Phytoetymology and ethnobotany of indigenous or introduced gymnosperms in India. Int. J. Unani Integr. Med. 2018, 2, 44–51. [Google Scholar] [CrossRef]
- Giaco, A.; Astuti, G.; Peruzzi, L. Typification and nomenclature of the names in the Santolina chamaecyparissus species complex (Asterceae). Taxon 2021, 70, 189–201. [Google Scholar] [CrossRef]
- Giaco, A.; De Giorgi, P.; Astuti, G.; Caputo, P.; Serrano, M.; Carballal, R.; Saez, L.; Bacchetta, G.; Peruzzi, L. A morphometric analysis of the Santolina chamaecyparissus complex (Asteraceae). Plants 2022, 11, 3458. [Google Scholar] [CrossRef]
- El-Sahhar, K.F.; Nassar, D.M.; Farag, H.M. Morphological and anatomical studies of Santolina chamaecyparissus L. (Asteraceae). I. Morphological characteristics. Res. J. Agric. Biol. Sci. 2011, 7, 294–302. [Google Scholar]
- Radovanović, K.; Vukić, D.; Kladar, N.; Hitl, M.; Gavarić, N.; Aćimović, M. Chemical analysis and biological potential of cotton lavender ethanolic extract (Santolina chamaecyparissus L., Asteraceae). Horticulturae 2024, 10, 1247. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, E.; Martin-Gil, J.; Gonzalez-Garcia, V.; Casanova-Gascon, J.; Martin-Ramos, P. Bioactive Sesquiterpenoids from Santolina chamaecyparissus L. Flowers: Chemical Profiling and Antifungal Activity Against Neocosmospora Species. Plants 2025, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Boudoukha, C.; Elmastas, M.; Aksit, H. Antioxidant capacity and phenolic content of Santolina chamaecyparissus L. methanol extract. Int. J. Green Pharm. 2019, 13, 260–267. [Google Scholar] [CrossRef]
- Chirane, M.S.; Benchabane, O.; Bousbia, N.; Zenia, S. Antioxydant and antimicrobial activities of essential oil and ethanol extract of Santolina chamaecyparissus L. Agrobiologia 2019, 9, 1660–1668. [Google Scholar]
- Al-Ramamneh, E.A.D.; Alsharafa, K.Y.; Rababah, T.; Rahahleh, R.J.; Al-Rimawi, F.; Shakya, A.K.; Ghrair, A.M.; Aludatt, M.H.; Alnawefleh, M.K. Silver nanoparticles and biostimulants affect chemical constituents, total phenolics, antioxidants, and potential antimicrobial acivities of Santolina chamaecyparissus. Horticulturae 2024, 10, 26. [Google Scholar] [CrossRef]
- Messaoudi, D.; Bouriche, H.; Siti, S.M.; Abderrahmane, S.; Zainul, A.Z. Evaluation of hepatoprotective effect of Algerian Santolina chamaecyparissus against acute exposure to paracetamol. Pharm. Lett. 2016, 8, 1–7. [Google Scholar]
- Messaoudi, D.; Bouriche, H.; Demirtas, I.; Senator, A. Phytochemical analysis and hepatoprotective activity of Algerian Santolina chamaecyparissus L. extract. Annu. Res. Rev. Biol. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Elsharkawy, E.R. Anticancer effect and seasonal variation in oil constituents of Santolina chamaecyparissus. Chem. Mater. Res. 2014, 6, 85–91. [Google Scholar]
- Ali, A.; Ali, A.; Warsi, M.H.; Ahmad, W.; Tahir, A. Chemical characterization, antidiabetic and anticancer activities of Santolina chamaecyparissus. Saudi J. Biol. Sci. 2021, 28, 4575–4580. [Google Scholar] [CrossRef]
- Saygideger, Y.; SaygideğerDemir, B.; Taskin Tok, T.; Avci, A.; Sezan, A.; Baydar, O.; Ozyilmaz, E. Antitumoral effects of Santolina chameacyparissus on non-small cell lung cancer cells. J. Exp. Clin. Med. 2021, 38, 294–300. [Google Scholar] [CrossRef]
- Azevedo, T.; Silva, J.; Faustino-Rocha, A.I.; Valada, A.; Anjos, L.; Moura, T.; Ferreira, R.; Santos, M.; Pires, M.J.; Neupharth, M.J.; et al. The role of natural compounsd in rat mammary cancer: The beneficial effects of Santolina chamaecyparissus L. aqueous extract. Vet. Stanica 2024, 55, 45–61. [Google Scholar] [CrossRef]
- Al Motwaa, S.M.; Al-Otaibi, W.A. Nano-emulsion based on Santolina chamaecyparissus essential oil potentiates the cytotoxic and apoptotic effects of Doxorubicin: An in vitro study. J. Microencapsul. 2024, 41, 503–518. [Google Scholar] [CrossRef]
- Giner, R.M.; Rios, J.L.; Villar, A. CNS depressant effects, anti-inflammatory activity and anti-cholinergic actions of Santolina chamaecyparissus extracts. Phytother. Res. 1988, 2, 37–41. [Google Scholar] [CrossRef]
- Giner, R.M.; Rios, J.L.; Villar, A. Inhibitory effects of Santolina chamaecyparissus extracts against spasmogen agonists. J. Ethnopharmacol. 1989, 27, 1–6. [Google Scholar] [CrossRef]
- Rios, J.L.; Giner, R.M.; Villar, A. Isolation and identification of an anti-inflammatory principle of Santolina chamaecyparissus. Phytother. Res. 1989, 3, 212–214. [Google Scholar] [CrossRef]
- Boudoukha, C.; Bouriche, H.; Ortega, E.; Senator, A. Immunomodulatory effects of Santolina chamaecyparissus leaf extracts on human neutrophil functions. Pharm. Biol. 2016, 54, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Recio, C.; Giner, R.; Manez, S.; Rios, J.L. Anti-phospholipase A2 and anti-inflammatory activity of Santolina chamaecyparissus. Life Sci. 2000, 66, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Suresh, B.; Sriram, S.; Dhanaraj, S.A.; Elango, K.; Chinnaswamy, K. Anticandidal activity of Santolina chamaecyparissus volatile oil. J. Ethnopharmacol. 1997, 55, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Khubeiz, M.J.; Mansour, G. In vitro antifungal, antimicrobial properties and chemical composition of Santolina chamaecyparissus essential oil in Syria. Int. J. Toxicol. Pharmacol. Res. 2016, 8, 372–378. [Google Scholar]
- Salah-Fatnassi, K.B.; Hassayoun, F.; Cheraif, I.; Khan, S.; Jannet, H.B.; Hammami, M.; Aouuni, M.; Harzallah-Skhiri, F. Chemical composition, antibacterial and antifungal activities of flowerhead and foot essential oils of Santolina chamaecyparissus L., growing wild in Tunisia. Saudi J. Biol. Sci. 2017, 24, 875–882. [Google Scholar] [CrossRef]
- Bailén, M.; Illescas, C.; Quijada, M.; Martínez-Díaz, R.A.; Ochoa, E.; Gómez-Muñoz, M.T.; Navarro-Rocha, J.; González-Coloma, A. Anti-trypanosomatidae activity of essential oils and their main components from selected medicinal plants. Molecules 2023, 28, 1467. [Google Scholar] [CrossRef]
- Clevenger, J.F.; Ewing, C.O. Santolina chamaecyparissus L. an adulterant of Matricaria chamomilla L. J. Am. Pharm. Assoc. 1919, 8, 536–538. [Google Scholar] [CrossRef]
- Misra, L.N.; Siddiqui, M.S.; Srivastava, S.K. Gas chromatographic examination of an essential oil of Santolina chamaecyparissus L. Perfum. Flavor. 1981, 6, 26–27. [Google Scholar]
- Giaco, A.; De Giorgi, P.; Astuti, G.; Varaldo, L.; Sáez, L.; Carballal, R.; Serrano, M.; Casazza, G.; Caputo, P.; Bacchetta, G.; et al. Diploids and polyploids in the Santolina chamaecyparissus complex (Asteraceae) show different karyotype asymmetry. Plant Biosyst. 2022, 156, 1237–1246. [Google Scholar] [CrossRef]
- López-Vinyallonga, S.; Soriano, I.; Susanna, A.; Montserra, J.M.; Roquet, C.; Garcia-Jacas, N. The Polyploid Series of the Achillea millefolium Aggregate in the Iberian Peninsula Investigated Using Microsatellites. PLoS ONE 2015, 10, e0129861. [Google Scholar] [CrossRef]
- Aćimović, M.; Semerdjieva, I.; Zheljazkov, V.; Rat, M.; Stanković-Jeremić, J.; Lončar, B.; Vukić, V.; Radovanović, K.; Gavarić, N.; Pezo, L. Variation in the essential oil composition and in silico analysis of anti-inflammatory potential of Balkan endemic species Achillea clypeolata Sm. Biochem. Syst. Ecol. 2023, 110, 104679. [Google Scholar] [CrossRef]
- Martínez-Francés, V.; Rivera, D.; Obon, C.; Alcaraz, F.; Ríos, S. Medicinal plants in traditional herbal wines and liquors in the east of Spain and the Balearic islands. Front. Pharmacol. 2021, 12, 713414. [Google Scholar] [CrossRef] [PubMed]
- Bolek, S.; Tosya, F.; Akcura, S. Effects of Santolina chamaecyparissus essential oil on rheological, thermal and antioxidative properties of dark chocolate. Int. J. Gastron. Food Sci. 2022, 27, 100481. [Google Scholar] [CrossRef]
- de Elguea-Culebras, G.O.; Bourbon, A.I.; Costa, M.J.; Munoz-Tebar, N.; Carmona, M.; Molina, A.; Sanchez-Vioque, R.; Berruga, M.I.; Vicente, A.A. Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’ cheese. Food Hydrocoll. 2019, 89, 272–282. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, D.; Mico-Vicent, B.; Jordan-Nunez, J.; Belda, A. Extraction of natural pigments from Mediterranean environments plants. Ind. Crops Prod. 2024, 221, 119352. [Google Scholar] [CrossRef]
- Shabani-Nooshabadi, M.; Ghandchi, M.S. Santolina chamaecyparissus extract as a natural source inhibitor for 304 stainless steel corrosion in 3.5% NaCl. J. Ind. Eng. Chem. 2015, 31, 231–237. [Google Scholar] [CrossRef]
- de Elguea-Culebras, G.O.; Sanchez-Vioque, R.; Berruga, M.I.; Herraiz-Penalver, D.; Gonzalez-Coloma, A.; Fe Andres, M.; Santana-Meridas, O. Biocidal potential and chemical composition of industrial essential oils from Hyssopus officinalis, Lavandula × intermedia var. Super, and Santolina chamaecyparissus. Chem. Biodivers. 2018, 15, e1700313. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G.; Sprawka, I.; Sytykiewicz, H. Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzuspersicae (Sulzer). Pestic. Biochem. Physiol. 2018, 145, 84–92. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G. The effect of Santolina chamaecyparissus and Tagetes patula essential oils on biochemical markers of oxidative stress in aphids. Insects 2021, 12, 360. [Google Scholar] [CrossRef]
- Aourach, M.; Barbero, G.F.; de Peredo, A.V.G.; Diakite, A.; El Boukari, M.; Essalmani, H. Composition and antifungal effects of aqueous extracts of Cymbopogon citratus, Laurus nobilis and Santolina chamaecyparissus on the growth of Fusarium oxysporum f. sp. lentis. Arch. Phytopathol. Pflanzenschutz 2021, 54, 2141–2159. [Google Scholar] [CrossRef]
- Grosso, C.; Coelho, J.A.; Urieta, J.S.; Palavra, A.M.F.; Barroso, J.G. Herbicidal activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated by hydrodistillation and supercritical fluid extraction. J. Agric. Food Chem. 2010, 58, 11007–11013. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.L.; Qin, Q.P.; Wang, L.T.; Gai, Q.Y.; Jiao, J.; Zhao, C.J.; Fu, J. Chemical profiling of volatile components of micropropagated Santolina chamaecyparissus L. Ind. Crops Prod. 2019, 137, 162–170. [Google Scholar] [CrossRef]
- Leotta, L.; Toscano, S.; Romano, D. Which plant species for green roofs in the Mediterranean environment? Plants 2023, 12, 3985. [Google Scholar] [CrossRef]
- Syafri, S.; Jaswir, I.; Yusof, F.; Rohman, A.; Ahda, M.; Hamidi, D. The use of instrumental technique and chemometrics for essential oil authentication: A review. Results Chem. 2022, 4, 100622. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Marti, G.; Thomas, A.; Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. [Google Scholar] [CrossRef]
- Marrero-Ponce, Y.; Barigye, S.J.; Jorge-Rodríguez, M.E.; Tran-Thi-Thu, T. QSRR prediction of gas chromatography retention indices of essential oil components. Chem. Pap. 2018, 72, 57–69. [Google Scholar] [CrossRef]
- Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Tešević, V.; Čabarkapa, I.; Todosijević, M. QSRR Model for predicting retention indices of Satureja kitaibelii Wierzb. ex Heuff. essential oil composition. Ind. Crops Prod. 2020, 154, 112752. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Beiranvandi, M.; Ahmadi, A.; Nikoloudakis, N. Predictive modeling of Satureja rechingeri essential oil yield and composition under water deficit and soil amendment conditions using artificial neural networks (ANNs). Comput. Electron. Agric. 2024, 222, 109072. [Google Scholar] [CrossRef]
- Sabzi-Nojadeh, M.; Niedbała, G.; Younessi-Hamzekhanlu, M.; Aharizad, S.; Esmaeilpour, M.; Abdipour, M.; Kujawa, S.; Niazian, M. Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods. Agriculture 2021, 11, 1191. [Google Scholar] [CrossRef]
- Maree, J.; Kamatou, G.; Gibbons, S.; Viljoen, A.; Van Vuuren, S. The application of GC–MS combined with chemometrics for the identification of antimicrobial compounds from selected commercial essential oils. Chemom. Intell. Lab. Syst. 2014, 130, 172–181. [Google Scholar] [CrossRef]
- Chun, M.H.; Kim, E.K.; Yu, S.M.; Oh, M.S.; Moon, K.Y.; Jung, J.H.; Hong, J. GC/MS combined with chemometrics methods for quality control of Schizonepeta tenuifolia Briq: Determination of essential oils. Microchem. J. 2011, 97, 274–281. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H.; Kamruzzaman, M.; Azizi, V.; Gancarz, M. Impact of different drying approaches on VOCs and chemical composition of Mentha spicata L. essential oil: A combined analysis of GC/MS and E-nose with chemometrics methods. Ind. Crops Prod. 2023, 206, 117595. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Capillary Gas Chromatography/Mass Spectoscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2009; ISBN 978-1932633214. [Google Scholar]
- Aćimović, M.; Stanković Jeremić, J.; Todosijević, M.; Cvetković, M.; Lončar, B.; Vukić, V.; Erceg, T.; Pezo, L.; Zheljazkov, V.D. The influence of weather conditions on the immortelle volatile constituents from essential oil and hydrosol with a focus on italidiones and its molecular docking anti-inflammatory potential. Nat. Prod. Commun. 2024, 19. [Google Scholar] [CrossRef]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Cao, D.S.; Miao, H.Y.; Liu, S.; Deng, B.C.; Yun, Y.H.; Wang, N.N.; Lu, A.P.; Zeng, W.B.; Chen, A.F. ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation. J. Cheminform. 2015, 7, 60. [Google Scholar] [CrossRef]
- Aalizadeh, R.; Thomaidis, N.S.; Bletsou, A.A.; Gago-Ferrero, P. Quantitative structure–retention relationship models to support nontarget high-resolution mass spectrometric screening of emerging contaminants in environmental samples. J. Chem. Inf. Model. 2016, 56, 1384–1398. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, C.; Liu, R.; Gu, S.; Xu, J. Quantitative structure–property relationship study of β-cyclodextrin complexation free energies of organic compounds. Chemom. Intell. Lab. Syst. 2015, 146, 313–321. [Google Scholar] [CrossRef]
- Yoon, Y.; Swales, G., Jr.; Margavio, T.M. A comparison of discriminant analysis versus artificial neural networks. J. Oper. Res. Soc. 1993, 44, 51–60. [Google Scholar] [CrossRef]
- Tsitlakidou, P.; Papachristoforou, A.; Tasopoulos, N.; Matzara, A.; Hatzikamari, M.; Karamanoli, K.; Mourtzinos, I. Sensory analysis, volatile profiles and antimicrobial properties of Origanum vulgare L. essential oils. Flavour Fragr. J. 2022, 37, 43–51. [Google Scholar] [CrossRef]
- Al Motwaa, S.M.; Al-Otaibi, W.A. Formulation design, statistical optimization and in vitro biological activities of nano-emulsion containing essential oil from cotton-lavender (Santolina chamaecyparissus L.). J. Drug Deliv. Sci. Technol. 2022, 75, 103664. [Google Scholar] [CrossRef]
- Sufer, O.; Ceylan, A.; Onbasli, D.; CelikYuvali, G.; Bozok, F. Chemical compounds and biological activity of Turkish Santolina chamaecyparissus L. essential oil by microwave assisted distillation. Kastamonu Univ. J. For. 2021, 21, 165–175. [Google Scholar] [CrossRef]
- Nikolić, M.; Radulović, N. Chemical composition of the essential oil from the aboveground parts of Santolina chamaecyparissus L. from Greece: NMR determination of the exocyclic double bond geometry of the major spiroketal-enol ether polyynic constituent. FU Phys. Chem. Technol. 2018, 16, 130. [Google Scholar]
- Zaiter, L.; Benayache, F.; Beghidja, N.; Figuerdo, G.; Chalard, P.; Chalcat, J.C.; Marchioni, E.; Benayache, S. Essential oils of Santolina africana Jord. & Fourr. and Santolina chamaecyparissus L. J. Essent. Oil-Bear. Plants 2015, 18, 1338–1342. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Perez-Alvarez, J.A.; Sendra, E.; Fernandez-Lopez, J. Chemical characterization and antibacterial activity of two aromatic herbs (Santolina chamaecyparissus and Sideritis angustifolia) widely used in the folk medicine. J. Food Saf. 2012, 32, 426–434. [Google Scholar] [CrossRef]
- Grosso, C.; Figuerdo, A.C.; Burillo, J.; Mainar, A.M.; Urieta, J.S.; Barroso, J.G.; Coelho, J.A.; Palavra, A.M.F. Supercritical fluid extraction of the volatile oil from Santolina chamaecyparissus. J. Sep. Sci. 2009, 32, 3215–3222. [Google Scholar] [CrossRef]
- Ahuja, A.; Bakshi, S.K.; Sharma, S.K.; Thappa, R.K.; Agarwal, S.G.; Kichlu, S.K.; Paul, R.; Kaul, M.K. Production of volatile terpenes by proliferating shoots and micropropagated plants Santolina chamaecyparissus L. (cotton lavender). Flavour Fragr. J. 2005, 20, 403–406. [Google Scholar] [CrossRef]
- Garg, S.N.; Gupta, V.K.; Mehta; Kumar, S. Volatile constituents of the essential oil of Santolina chamaecyparissus Linn. from the Southern hills of India. J. Essent. Oil Res. 2001, 13, 234–235. [Google Scholar] [CrossRef]
- Demirci, B.; Ozek, T.; Baser, K.H.C. Chemical composition of Santolina chamaecyparissus L. essential oil. J. Essent. Oil Res. 2000, 12, 625–627. [Google Scholar] [CrossRef]
- Perez-Alonso, M.J.; Velasco-Negueruela, A. Essential oil components of Santolina chamaecyparissus L. Flavour Fragr. J. 1992, 7, 37–41. [Google Scholar] [CrossRef]
- Villar, A.; Giner, R.M.; Rios, J.L. Chemical composition of Santolina chamaecyparissus ssp. squarrosa essential oil. J. Nat. Prod. 1986, 49, 1143–1144. [Google Scholar] [CrossRef]
- El-Sahhar, K.F.; Nassar, D.M.; Farag, H.M. Morphological and anatomical studies of Santolina chamaecyparissus L. (Asteraceae) II. Anatomical characteristics and volatile oil. Res. J. Agric. Biol. Sci. 2011, 7, 413–422. [Google Scholar]
- Vernin, G. Volatile constituents of the essential oil of Santolina chamaecyparissus L. J. Essent. Oil Res. 1991, 3, 49–53. [Google Scholar] [CrossRef]
- Djeddia, S.; Djebile, K.; Hadjbourega, G.; Achour, Z.; Argyropoulou, C.; Skaltsa, H. In vitro antimicrobial properties and chemical composition of Santolina chamaecyparissus essential oil from Algeria. Nat. Prod. Commun. 2012, 7, 937–940. [Google Scholar] [CrossRef]
- Bressanello, D.; Liberto, E.; Cordero, C.; Sgorbini, B.; Rubiolo, P.; Pellegrino, G.; Ruosi, M.R.; Bicchi, C. Chemometric Modeling of Coffee Sensory Notes through Their Chemical Signatures: Potential and Limits in Defining an Analytical Tool for Quality Control. J. Agric. Food Chem. 2018, 66, 7096–7109. [Google Scholar] [CrossRef]
- Calatayud, M.V.; Li, X.; Dag, A.; Benjamin, O.; Tietel, Z.; Polari, J.J.; Zipori, I.; Wang, S.C. Relationships Between Chemical Compounds and Sensory Properties of Virgin Olive Oil in the US and Israel: Development of a Prediction Model for Defects. J. Agric. Food Chem. 2024, 72, 25391–25402. [Google Scholar] [CrossRef]
- Los, P.R.; Simões, D.R.S.; Benvenutti, L.; Zielinski, A.A.F.; Alberti, A.; Nogueira, A. Combining chemical analysis, sensory profile, CATA, preference mapping and chemometrics to establish the consumer quality standard of Camembert-type cheeses. Int. J. Dairy Technol. 2021, 74, 371–382. [Google Scholar] [CrossRef]
- Pezo, L.; Lončar, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Pezo, M.; Aćimović, M. Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach. Life 2022, 12, 1722. [Google Scholar] [CrossRef]
- Baccolo, G.; Quintanilla-Casas, B.; Vichi, S.; Augustijn, D.; Bro, R. From untargeted chemical profiling to peak tables—A fully automated AI driven approach to untargeted GC-MS. Trends Anal. Chem. 2021, 145, 116451. [Google Scholar] [CrossRef]
Peak | Compound | Class | R.t. | RIexp | RIlit | % | Odor Type # |
---|---|---|---|---|---|---|---|
1 | α-Pinene | MT | 5.972 | 927 | 932 | 0.19 | herbal |
2 | Camphene | MT | 6.373 | 944 | 946 | 0.71 | woody |
3 | Sabinene | MT | 7.058 | 965 | 969 | 0.43 | woody |
4 | β-Pinene | MT | 7.167 | 970 | 974 | 1.41 | herbal |
5 | Myrcene | MT | 7.557 | 987 | 988 | 0.68 | spicy |
6 | Yomogi alcohol | OMT | 7.772 | 997 | 999 | 1.30 | - |
7 | α-Terpinene | MT | 8.440 | 1015 | 1014 | 0.09 | woody |
8 | p-Cymene | MT | 8.698 | 1021 | 1020 | 0.18 | terpenic |
9 | β-Phellandrene | MT | 8.851 | 1025 | 1025 | 0.92 | minty |
10 | 1,8-Cineole | OMT | 8.910 | 1027 | 1026 | 0.77 | herbal |
11 | Artemisia ketone | OMT | 10.032 | 1054 | 1056 | 36.11 | herbal |
12 | Artemisia alcohol | OMT | 10.833 | 1075 | 1080 | 0.72 | herbal |
13 | 2-Methyl butyl isovalerate | O | 11.668 | 1095 | 1103 | 0.11 | fruity |
14 | cis-p-Menth-2-en-1-ol | OMT | 12.525 | 1116 | 1118 | 0.17 | - |
15 | trans-Pinocarveol | OMT | 13.105 | 1131 | 1135 | 0.22 | herbal |
16 | Camphor | OMT | 13.310 | 1136 | 1141 | 2.23 | camphoreous |
17 | Chrysanthemyl alcohol | OMT | 14.001 | 1153 | 1158 | 0.19 | - |
18 | Pinocarvone | OMT | 14.102 | 1156 | 1160 | 0.08 | minty |
19 | Borneol | OMT | 14.227 | 1159 | 1165 | 1.12 | balsamic |
20 | Terpinen-4-ol | OMT | 14.748 | 1171 | 1174 | 0.63 | spicy |
21 | Cryptone | NOMT | 15.100 | 1180 | 1183 | 1.03 | - |
22 | α-Terpineol | OMT | 15.328 | 1186 | 1186 | 0.07 | terpenic |
23 | Myrtenal | OMT | 15.560 | 1192 | 1195 | 0.33 | herbal |
24 | 3Z-Hexenyl 2-methyl butanoate | O | 17.183 | 1229 | 1229 | 0.12 | green |
25 | p-Menth-1en-7-al | OMT | 19.048 | 1271 | 1273 | 0.29 | - |
26 | Carvacrol | OMT | 20.254 | 1299 | 1298 | 0.48 | spicy |
27 | α-Longipinene | ST | 22.425 | 1348 | 1350 | 0.91 | - |
28 | trans-Caryophyllene | ST | 25.445 | 1417 | 1417 | 0.22 | spicy |
29 | allo-Aromadendrene | ST | 27.213 | 1460 | 1458 | 0.63 | woody |
30 | ar-Curcumene | ST | 28.14 | 1482 | 1479 | 2.86 | - |
31 | 1-Pentadecene | O | 28.529 | 1491 | 1493 | 0.28 | - |
32 | δ-Cadinene | ST | 29.843 | 1522 | 1522 | 0.29 | herbal |
33 | Italicene ether | OST | 30.275 | 1533 | 1536 | 0.32 | - |
34 | Spathulenol | OST | 32.038 | 1575 | 1577 | 3.41 | earthy |
35 | Caryophyllene oxide | OST | 32.248 | 1580 | 1582 | 0.99 | woody |
36 | Salvial-4(14)-en-1-one | OST | 32.684 | 1590 | 1594 | 0.37 | - |
37 | NI-1 | NI * | 32.886 | 1595 | / | 3.26 | - |
38 | NI-2 | NI * | 33.207 | 1603 | / | 1.03 | - |
39 | β-Oplopenone | OST | 33.273 | 1605 | 1607 | 0.72 | - |
40 | 6-methyl-6-(3-methylphenyl)-Heptan-2-one | O | 34.373 | 1635 | 1639 | 0.36 | - |
41 | Vulgarone B | OST | 34.928 | 1649 | 1649 | 22.13 | - |
42 | (Z,Z)-1,8,11-Heptadecatriene | O | 35.211 | 1658 | 1659 | 0.18 | - |
43 | NI-3 | NI * | 35.368 | 1661 | / | 0.97 | - |
44 | Khusinol | OST | 35.954 | 1678 | 1675 | 0.20 | - |
45 | Germacra-4(15),5,10(14)-trien-1-α-ol | OST | 36.248 | 1685 | 1685 | 0.78 | - |
46 | Amorpha-4,9-dien-2-ol | OST | 36.899 | 1703 | 1700 | 0.93 | - |
47 | Cyclocolorenone | OST | 38.928 | 1758 | 1759 | 0.30 | - |
Monoterpene hydrocarbons | (MT) | 4.61 | |||||
Oxygenated monoterpenes | (OMT) | 44.71 | |||||
Noroxygenated monoterpenes | (NOMT) | 1.03 | |||||
Sesquiterpene hydrocarbons | (ST) | 4.91 | |||||
Oxygenated sesquiterpenes | (OST) | 30.15 | |||||
Other | (O) | 1.05 | |||||
Not identified | (NI *) | 5.26 |
1 AATSC7m | 1 AATSC1e | 1 AATSC3e | 2 SM1_DzZ | 2 VR2_Dzm | 3 ETA_Beta_ns | 4 McGowan_Volume | 5 MDEC-11 | |
---|---|---|---|---|---|---|---|---|
1 AATSC7m | 0.014 | −0.145 | −0.103 | −0.156 | −0.443 | 0.016 | 0.364 | |
p = 0.969 | p = 0.689 | p = 0.778 | p = 0.667 | p = 0.199 | p = 0.965 | p = 0.301 | ||
1 AATSC1e | 0.134 | −0.446 | −0.111 | −0.226 | 0.140 | −0.276 | ||
p = 0.712 | p = 0.197 | p = 0.761 | p = 0.531 | p = 0.699 | p = 0.441 | |||
1 AATSC3e | −0.485 | 0.248 | 0.167 | 0.015 | −0.411 | |||
p = 0.155 | p = 0.489 | p = 0.644 | p = 0.968 | p = 0.238 | ||||
2 SM1_DzZ | −0.164 | −0.021 | −0.107 | −0.057 | ||||
p = 0.650 | p = 0.955 | p = 0.769 | p = 0.876 | |||||
2 VR2_Dzm | −0.297 | 0.283 | −0.027 | |||||
p = 0.404 | p = 0.428 | p = 0.941 | ||||||
3 ETA_Beta_ns | 0.008 | −0.298 | ||||||
p = 0.984 | p = 0.403 | |||||||
4 McGowan_Volume | −0.224 | |||||||
p = 0.534 |
Net. Name | Performance | Error | Training Algorithm | Error Function | Activation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Train. | Test. | Valid. | Train. | Test. | Valid. | Hidden | Output | |||
MLP 8-8-1 | 0.980 | 0.979 | 0.998 | 1588.284 | 870.025 | 658.181 | BFGS 59 | SOS | Exp. | Exp. |
Reference | Origin | Plant Part | Method of Extraction | Essential Oil Content (%) |
---|---|---|---|---|
TS | Serbia | Flowers | HD | 0.48 |
[63] | Saudi Arabia | Aerial parts | HD | 0.76 |
[34] | Turkey | Leaves | HD | 0.75 |
[64] | Turkey | Aerial parts | MAE | 0.60 |
[10] | Algeria | Aerial parts | HD | 0.85 |
[65] | Greece | Aerial parts | HD | 0.33 |
[39] | Poland | Aerial parts | HD | 1.11 |
[26] | Tunisia | Flowers | HD | 0.06 |
Root | 0.15 | |||
[25] | Syria | Leaves | HD | 2.10 |
[66] | Algeria | Aerial parts | SD | 0.80 |
[67] | Spain | Aerial parts | HD | 1.00 |
[68] | Spain | Flowers | HD | 0.10–0.50 |
SFE | 0.10–1.40 | |||
[69] | India | Aerial parts | HD | 0.10–1.10 |
[70] | India | Aerial parts | HD | 1.10 |
[71] | Turkey | Aerial parts | HD | 1.60 |
[72] | Spain | Aerial parts | SD | 0.18–1.55 |
[73] | Spain | Aerial parts | HD | 0.40 |
[29] | India | N/A | HD | 0.40–0.50 |
Sample No | Artemisia Ketone | Camphor | 1,8-Cineole | Myrcene | Borneol | β-Phellandrene | p-Cymene | Cubenol | Terpinen-4-ol | trans-p-Mentha-2,8-dienol | Sum of Marker Compounds | Plant Part; Method of Extraction | Origin | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 36.1 | 2.2 | 0.8 | 0.7 | 1.1 | 0.9 | 0.2 | 0.0 | 0.6 | 0.0 | 42.6 | F; HD | Serbia | TS |
2 | 0.0 | 0.5 | 0.0 | 0.0 | 2.1 | 0.4 | 0.0 | 0.0 | 1.4 | 54.0 | 58.4 | AP; HD | Saudi Arabia | [63] |
3 | 39.8 | 17.7 | 0.0 | 2.9 | 1.2 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 69.6 | AP; MAE | Turkey | [65] |
4 | 6.8 | 0.0 | 0.0 | 27.4 | 0.0 | 17.2 | 0.0 | 0.0 | 0.0 | 0.0 | 51.4 | FS; N * | China | [43] |
5 | 9.9 | 0.0 | 0.0 | 24.1 | 0.0 | 18.1 | 0.0 | 0.0 | 0.1 | 0.0 | 52.2 | |||
6 | 42.0 | 2.5 | 0.0 | 7.7 | 1.0 | 8.3 | 0.2 | 3.4 | 0.1 | 0.0 | 65.2 | AP; HD | Algeria | [10] |
7 | 2.6 | 0.0 | 9.8 | 0.0 | 1.4 | 0.0 | 1.4 | 0.0 | 2.1 | 0.0 | 17.3 | AP; SD | Spain | [38] |
8 | 25.9 | 2.8 | 0.5 | 9.2 | 1.0 | 18.7 | 0.2 | 0.0 | 0.6 | 0.0 | 58.9 | AP; HD | Poland | [39] |
9 | 0.1 | 5.3 | 12.9 | 3.0 | 3.7 | 0.0 | 0.8 | 0.0 | 7.0 | 0.0 | 32.8 | F; HD | Tunisia | [26] |
10 | 15.7 | 2.4 | 0.6 | 7.4 | 1.3 | 10.6 | 0.0 | 0.0 | 0.9 | 0.0 | 38.9 | L; HD | Syria | [25] |
11 | 0.0 | 0.0 | 11.2 | 6.4 | 0.3 | 0.0 | 1.5 | 0.0 | 6.1 | 0.0 | 25.5 | AP; SD | Algeria | [66] |
12 | 0.0 | 1.8 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | AP; HD ** | Saudi Arabia | [14] |
13 | 0.0 | 0.7 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | |||
14 | 27.2 | 3.9 | 0.0 | 6.9 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 45.5 | AP; HD | Spain | [67] |
15 | 15.7 | 2.5 | 17.8 | 0.6 | 14.3 | 1.5 | 0.0 | 0.0 | 1.3 | 0.0 | 53.8 | AP; HD *** | Egypt | [74] |
16 | 16.6 | 2.1 | 19.6 | 0.4 | 7.4 | 1.2 | 0.0 | 0.0 | 1.8 | 0.0 | 49.1 | |||
17 | 0.0 | 0.8 | 0.3 | 0.4 | 1.1 | 0.3 | 32.8 | 0.0 | 0.8 | 0.0 | 36.5 | F; HD | Spain | [68] |
18 | 0.0 | 2.2 | 1.8 | 0.3 | 0.2 | 3.8 | 0.3 | 0.0 | 0.1 | 0.0 | 8.7 | F; SFE | ||
19 | 0.0 | 0.0 | 0.5 | 7.0 | 1.6 | 0.0 | 0.3 | 0.0 | 2.6 | 0.0 | 12.0 | AP; HD **** | India | [69] |
20 | 0.0 | 0.0 | 13.5 | 0.0 | 1.6 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 16.8 | |||
21 | 31.8 | 1.9 | 15.6 | 14.2 | 0.0 | 0.0 | 0.2 | 0.0 | 2.9 | 0.0 | 66.6 | AP; HD | India | [70] |
22 | 38.1 | 11.7 | 0.0 | 4.3 | 0.9 | 9.2 | 0.3 | 0.0 | 1.1 | 0.0 | 65.6 | AP; HD | Turkey | [71] |
23 | 0.1 | 9.2 | 8.7 | 0.1 | 11.6 | 0.0 | 1.3 | 1.6 | 3.4 | 0.0 | 36.0 | AP; SD ***** | Spain | [73] |
24 | 4.5 | 24.9 | 7.2 | 0.2 | 12.8 | 0.0 | 1.4 | 1.7 | 3.5 | 0.0 | 56.2 | |||
25 | 2.8 | 18.9 | 2.3 | tr | 26.0 | 0.0 | 0.8 | 1.6 | 3.1 | 0.0 | 55.5 | |||
26 | 1.5 | tr | 6.0 | 0.3 | 11.3 | 0.0 | 1.6 | 6.7 | 4.4 | 0.0 | 31.8 | |||
27 | 1.2 | 22.5 | 17.6 | 0.1 | 28.4 | 0.0 | 1.1 | 0.4 | 5.1 | 0.0 | 76.4 | |||
28 | 0.1 | 42.9 | 0.3 | 0.1 | 8.4 | 0.0 | 0.2 | 17.3 | 1.0 | 0.0 | 70.3 | |||
29 | 0.1 | 8.3 | 2.9 | 0.2 | 2.3 | 0.0 | 0.9 | 12.9 | 2.4 | 0.0 | 30.0 | |||
30 | 27.8 | 2.0 | 2.8 | 0.9 | 0.9 | 0.0 | 0.4 | 1.7 | 1.1 | 0.0 | 37.6 | |||
31 | 25.6 | 4.7 | 13.2 | 16.1 | 0.6 | 0.0 | 0.1 | 8.6 | 0.8 | 0.0 | 69.7 | |||
32 | 45.0 | 1.5 | 2.0 | 15.0 | 1.5 | 5.0 | 0.5 | 0.0 | 0.4 | 0.0 | 70.9 | L; HD | France | [75] |
33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33.0 | 0.0 | 0.0 | 0.0 | 33.0 | N/A; HD | India | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lončar, B.; Cvetković, M.; Rat, M.; Jeremić, J.S.; Filipović, J.; Pezo, L.; Aćimović, M. Chemical Composition, Chemometric Analysis, and Sensory Profile of Santolina chamaecyparissus L. (Asteraceae) Essential Oil: Insights from a Case Study in Serbia and Literature-Based Review. Separations 2025, 12, 115. https://doi.org/10.3390/separations12050115
Lončar B, Cvetković M, Rat M, Jeremić JS, Filipović J, Pezo L, Aćimović M. Chemical Composition, Chemometric Analysis, and Sensory Profile of Santolina chamaecyparissus L. (Asteraceae) Essential Oil: Insights from a Case Study in Serbia and Literature-Based Review. Separations. 2025; 12(5):115. https://doi.org/10.3390/separations12050115
Chicago/Turabian StyleLončar, Biljana, Mirjana Cvetković, Milica Rat, Jovana Stanković Jeremić, Jelena Filipović, Lato Pezo, and Milica Aćimović. 2025. "Chemical Composition, Chemometric Analysis, and Sensory Profile of Santolina chamaecyparissus L. (Asteraceae) Essential Oil: Insights from a Case Study in Serbia and Literature-Based Review" Separations 12, no. 5: 115. https://doi.org/10.3390/separations12050115
APA StyleLončar, B., Cvetković, M., Rat, M., Jeremić, J. S., Filipović, J., Pezo, L., & Aćimović, M. (2025). Chemical Composition, Chemometric Analysis, and Sensory Profile of Santolina chamaecyparissus L. (Asteraceae) Essential Oil: Insights from a Case Study in Serbia and Literature-Based Review. Separations, 12(5), 115. https://doi.org/10.3390/separations12050115