On the Identification of Mobile and Stationary Zone Mass Transfer Resistances in Chromatography
Abstract
:1. Introduction
2. Materials and Methods
The Two-Zone Moment Analysis Approach
3. Results and Discussion
3.1. Analysis of the b-Field in the Stationary Zone
3.2. Identification of and
3.3. Limitations and Flaws of Giddings’ Approach
- 1
- The term, which must sum in Equation (20) with the term in order to complete the contribution of the stationary zone, is missing in Giddings’ expression, Equation (3). The term plays a crucial role at low/intermediate Peclet values, and is absent only for axially invariant systems, for which and are independent of the axial coordinate x.
- 2
- According to Equation (25), the boundary condition enforcing at the whole boundary , implies , and therefore, is a very crude approximation of the actual boundary condition , which properly accounts for the interaction between the mobile and stationary zones.
3.4. The Gradient-Based Approach to and
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Sarwar, M.S.; Simon, U.; Dimartino, S. Experimental investigation and mass transfer modelling of 3D printed monolithic cation exchangers. J. Chromatogr. A 2021, 1646, 462125. [Google Scholar] [CrossRef]
- Conti, M.; Boland, D.; Heeran, C.; Symington, J.A.; Pullen, J.R.; Dimartino, S. Purification of monoclonal antibodies using novel 3D printed ordered stationary phases. J. Chromatogr. A 2024, 1722, 464873. [Google Scholar] [CrossRef] [PubMed]
- Feast, S.; Titterington, J.; Hoang, V.A.; Allison, T.M.; Fee, C.; Nazmi, A.R. Purification of his-tagged proteins using printed monolith adsorption columns. J. Chromatogr. A 2024, 1733, 465216. [Google Scholar] [CrossRef]
- Malsche, W.D.; Gardeniers, H.; Desmet, G. Experimental Study of Porous Silicon Shell Pillars under Retentive Conditions. Anal. Chem. 2008, 80, 5391–5400. [Google Scholar] [CrossRef] [PubMed]
- Broeckhoven, K.; Desmet, G. Advances and Innovations in Liquid Chromatography Stationary Phase Supports. Anal. Chem. 2021, 93, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Vankeerberghen, B.; Op de Beeck, J.; Desmet, G. Column-Only Band Broadening in a Porous Shell Radially Elongated Pillar Array Column. Anal. Chem. 2024, 96, 3618–3626. [Google Scholar] [CrossRef] [PubMed]
- Desmet, G.; Broeckhoven, K. Equivalence of the Different Cm- and Cs-Term Expressions Used in Liquid Chromatography and a Geometrical Model Uniting Them. Anal. Chem. 2008, 80, 8076–8088. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Guiochon, G. The van Deemter equation: Assumptions, limits, and adjustment to modern high performance liquid chromatography. J. Chromatogr. A 2013, 1302, 1–13. [Google Scholar] [CrossRef]
- Knox, J.H. Band dispersion in chromatography—A universal expression for the contribution from the mobile zone. J. Chromatogr. A 2002, 960, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Miyabe, K.; Matsumoto, Y.; Guiochon, G. Peak Parking-Moment Analysis. A Strategy for the Study of the Mass-Transfer Kinetics in the Stationary Phase. Anal. Chem. 2007, 79, 1970–1982. [Google Scholar] [CrossRef] [PubMed]
- Miyabe, K.; Ando, N.; Guiochon, G. Peak parking method for measurement of molecular diffusivity in liquid phase systems. J. Chromatogr. A 2009, 1216, 4377–4382. [Google Scholar] [CrossRef]
- Miyabe, K.; Nagai, J.i.; Guiochon, G. Peak parking-moment analysis: A strategy for the measurement of molecular diffusivity in liquid phase. Chem. Eng. Sci. 2010, 65, 3859–3864. [Google Scholar] [CrossRef]
- Desmet, G.; Deridder, S. Effective medium theory expressions for the effective diffusion in chromatographic beds filled with porous, non-porous and porous-shell particles and cylinders. Part I: Theory. J. Chromatogr. A 2011, 1218, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Hlushkou, D.; Liasneuski, H.; Tallarek, U.; Torquato, S. Effective diffusion coefficients in random packings of polydisperse hard spheres from two-point and three-point correlation functions. J. Appl. Phys. 2015, 118, 124901. [Google Scholar] [CrossRef]
- Adrover, A.; Venditti, C.; Desmet, G. An alternative general model for the effective longitudinal diffusion in chromatographic beds filled with ordered porous particles. J. Chromatogr. A 2024, 1715, 464598. [Google Scholar] [CrossRef] [PubMed]
- Adrover, A.; Venditti, C.; Desmet, G. On the modelling of the effective longitudinal diffusion in bi-continuous chromatographic beds. J. Chromatogr. A 2024, 1721, 464817. [Google Scholar] [CrossRef] [PubMed]
- Giddings, J.C. Dynamics of Chromatography: Principles and Theory; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Gritti, F.; Guiochon, G. General HETP equation for the study of mass-transfer mechanisms in RPLC. Anal. Chem. 2006, 78, 5329–5347. [Google Scholar] [CrossRef]
- De Wilde, D.; Detobel, F.; Billen, J.; Deconinck, J.; Desmet, G. Modelling the relation between the species retention factor and the C-term band broadening in pressure-driven and electrically driven flows through perfectly ordered 2-D chromatographic media. J. Sep. Sci. 2009, 32, 4077–4088. [Google Scholar] [CrossRef]
- Matheuse, F.; Deridder, S.; Desmet, G. An explicit expression for the retention factor and velocity dependency of the mobile zone mass transfer band broadening in packed spheres beds used in liquid chromatography. J. Chromatogr. A 2020, 1634, 461710. [Google Scholar] [CrossRef]
- Huygens, B.; Venditti, C.; Adrover, A.; Desmet, G. Nonadditivity and Nonlinearity of Mobile and Stationary Zone Mass Transfer Resistances in Chromatography. Anal. Chem. 2023, 95, 15199–15207. [Google Scholar] [CrossRef] [PubMed]
- Moussa, A.; Huygens, B.; Venditti, C.; Adrover, A.; Desmet, G. Theoretical computation of the band broadening in micro-pillar array columns. J. Chromatogr. A 2024, 1715, 464607. [Google Scholar] [CrossRef]
- Moussa, A.; Huygens, B.; Venditti, C.; Adrover, A.; Desmet, G. On the contribution of the top and bottom walls in micro-pillar array columns and related high-aspect ratio chromatography systems. J. Chromatogr. A 2024, 1720, 464825. [Google Scholar] [CrossRef] [PubMed]
- Venditti, C.; Giona, M.; Adrover, A. Exact moment analysis of transient/asymptotic dispersion properties in periodic media with adsorbing/desorbing walls. Phys. Fluids 2022, 34. [Google Scholar] [CrossRef]
- Venditti, C.; Huygens, B.; Desmet, G.; Adrover, A. Moment analysis for predicting effective transport properties in hierarchical retentive porous media. J. Chromatogr. A 2023, 1703, 464099. [Google Scholar] [CrossRef] [PubMed]
- Lauriola, C.; Venditti, C.; Desmet, G.; Adrover, A. Dispersion properties of triply periodic minimal surface stationary phases for LC: The case of superficial adsorption. J. Chromatogr. A 2025, 1743, 465676. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Edwards, D.A. Macrotransport Processes; Butterworth-Heinemann: London, UK, 1993. [Google Scholar]
- Brenner, H.; Adler, P.M.; Stewartson, K. Dispersion resulting from flow through spatically periodic porous media II. Surface and intraparticle transport. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1982, 307, 149–200. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Q.; Bau, H.H. Dispersion in retentive pillar array columns. J. Chromatogr. A 2010, 1217, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, Q.; Li, N. Predictive model of solute transport with reversible adsorption in spatially periodic hierarchical porous media. J. Chromatogr. A 2015, 1407, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Schure, M.R.; Maier, R.S.; Kroll, D.M.; Davis, H.T. Simulation of packed-bed chromatography utilizing high-resolution flow fields: Comparison with models. Anal. Chem. 2002, 74, 6006–6016. [Google Scholar] [CrossRef]
- Schure, M.R.; Maier, R.S.; Kroll, D.M.; Davis, H.T. Simulation of ordered packed beds in chromatography. J. Chromatogr. A 2004, 1031, 79–86. [Google Scholar] [CrossRef]
- Ghosh, R.; Chen, G. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations. J. Chromatogr. A 2017, 1515, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Umatheva, U.; Chen, G.; Ghosh, R. Computational fluid dynamic (CFD) simulation of a cuboid packed-bed chromatography device. Chem. Eng. Res. Des. 2019, 152, 393–401. [Google Scholar] [CrossRef]
- Xu, Y.; Umatheva, U.; Ghosh, R. Evaluation of a Novel Cuboid Hollow Fiber Hemodialyzer Design Using Computational Fluid Dynamics. Membranes 2023, 13, 93. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Mass transfer kinetics, band broadening and column efficiency. J. Chromatogr. A 2012, 1221, 2–40. [Google Scholar] [CrossRef]
- Cavazzini, A.; Gritti, F.; Kaczmarski, K.; Marchetti, N.; Guiochon, G. Mass-Transfer Kinetics in a Shell Packing Material for Chromatography. Anal. Chem. 2007, 79, 5972–5979. [Google Scholar] [CrossRef] [PubMed]
- Horváth, K.; Gritti, F.; Fairchild, J.N.; Guiochon, G. On the optimization of the shell thickness of superficially porous particles. J. Chromatogr. A 2010, 1217, 6373–6381. [Google Scholar] [CrossRef] [PubMed]
- Liekens, A.; Denayer, J.; Desmet, G. Experimental investigation of the difference in B-term dominated band broadening between fully porous and porous-shell particles for liquid chromatography using the Effective Medium Theory. J. Chromatogr. A 2011, 1218, 4406–4416. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adrover, A.; Desmet, G. On the Identification of Mobile and Stationary Zone Mass Transfer Resistances in Chromatography. Separations 2025, 12, 59. https://doi.org/10.3390/separations12030059
Adrover A, Desmet G. On the Identification of Mobile and Stationary Zone Mass Transfer Resistances in Chromatography. Separations. 2025; 12(3):59. https://doi.org/10.3390/separations12030059
Chicago/Turabian StyleAdrover, Alessandra, and Gert Desmet. 2025. "On the Identification of Mobile and Stationary Zone Mass Transfer Resistances in Chromatography" Separations 12, no. 3: 59. https://doi.org/10.3390/separations12030059
APA StyleAdrover, A., & Desmet, G. (2025). On the Identification of Mobile and Stationary Zone Mass Transfer Resistances in Chromatography. Separations, 12(3), 59. https://doi.org/10.3390/separations12030059