Adsorption of Cr(III) by IRA-900 Resin in Sodium Phosphite and Sulfuric Acid System
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Characterization Techniques
2.3. Experimental Procedures
2.3.1. Selective Adsorption
2.3.2. Static Adsorption
2.3.3. Desorption Conditions
2.3.4. Speciation Profiles for Cr(III)
3. Results and Discussion
3.1. Influence of Sodium Phosphite Concentration on Adsorption Selectivity
3.2. Effect of Sulfuric Acid Concentration
3.3. Effects of Time and Temperature
3.4. Effect of Initial Ion Concentration of Cr(III)
3.5. Adsorption Kinetics
3.6. Adsorption Isotherms
3.7. Desorption Experiments
3.8. Comparison with Reported Adsorbents
3.9. Investigation of Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DETA | Diethylenetriamine |
EDTA | Ethylene Diamine Tetraacetic Acid |
References
- Zhao, P.; Zhang, H.; Yu, J.; Gao, H.; Cao, Y.; Zhu, Y.; Zhao, H. Conditions for mutual conversion of Cr(III) and Cr(VI) in aluminum chromium slag. J. Alloys Compd. 2019, 788, 506–513. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Mfarrej, M.F.B.; Alam, P.; Rinklebe, J.; Ahmad, P. Accumulation of chromium in plants and its repercussion in animals and humans. Environ. Pollut. 2022, 301, 119044. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.J.; Bansal, N.; Chirwa, E.M. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expo. Health 2018, 12, 51–62. [Google Scholar] [CrossRef]
- Mortada, W.I.; El-Naggar, A.; Mosa, A.; Palansooriya, K.N.; Yousaf, B.; Tang, R.; Wang, S.; Cai, Y.; Chang, S.X. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. Chemosphere 2023, 331, 138804. [Google Scholar] [CrossRef]
- Mortazavian, S.; An, H.; Chun, D.; Moon, J. Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies. Chem. Eng. J. 2018, 353, 781–795. [Google Scholar] [CrossRef]
- Lyu, H.; Tang, J.; Huang, Y.; Gai, L.; Zeng, E.Y.; Liber, K.; Gong, Y. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J. 2017, 322, 516–524. [Google Scholar] [CrossRef]
- Sughis, M.; Nawrot, T.S.; Haufroid, V.; Nemery, B. Adverse health effects of child labor: High exposure to chromium and oxidative DNA damage in children manufacturing surgical instruments. Environ. Health Perspect. 2012, 120, 1469–1474. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.; Das, N.; Pandey, B. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250, 272–291. [Google Scholar] [CrossRef]
- Ma, H.; Hua, L.; Lian, K.; Ma, X. Adsorptive removal of trivalent chromium in aqueous solution using precipitate produced from aluminum tanning wastewater. Water Air Soil Poll. 2014, 225, 1956. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere 2021, 262, 128379. [Google Scholar] [CrossRef]
- Zha, S.; Yu, A.; Wang, Z.; Shi, Q.; Cheng, X.; Liu, C.; Deng, C.; Zeng, G.; Luo, S.; Zhao, Z. Microbial strategies for effective hexavalent chromium removal: A comprehensive review. Chem. Eng. J. 2024, 489, 151457. [Google Scholar] [CrossRef]
- Ukhurebor, K.E.; Aigbe, U.O.; Onyancha, R.B.; Nwankwo, W.; Osibote, O.A.; Paumo, H.K.; Ama, O.M.; Adetunji, C.O.; Siloko, I.U. Effect of hexavalent chromium on the environment and removal techniques: A review. J. Environ. Manag. 2021, 280, 111809. [Google Scholar] [CrossRef]
- Mitra, S.; Sarkar, A.; Sen, S. Removal of chromium from industrial effluents using nanotechnology: A review. Nanotechnol. Environ. Eng. 2017, 2, 11. [Google Scholar] [CrossRef]
- Acharya, R.; Sillanpää, M.; Al-Farraj, S. A comprehensive review on sequestration of aqueous Cr(VI) over graphene based adsorbents. J. Hazard. Mater. Adv. 2025, 18, 100670. [Google Scholar] [CrossRef]
- Jiao, F.; Li, W.; Xue, K.; Yang, C.; Qin, W. Recovery of chromium and magnesium from spent magnesia-chrome refractories by acid leaching combined with alkali precipitation and evaporation. Sep. Purif. Technol. 2019, 227, 115705. [Google Scholar] [CrossRef]
- Yao, F.; Jia, M.; Yang, Q.; Luo, K.; Chen, F.; Zhong, Y.; He, L.; Pi, Z.; Hou, K.; Wang, D. Electrochemical Cr (VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr (VI) and in-situ precipitation of Cr (III). Chemosphere 2020, 260, 127537. [Google Scholar] [CrossRef]
- Da Silva, G.; Dos Santos, F.; Roth, G.; Frankenberg, C. Electroplating for chromium removal from tannery wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 607–614. [Google Scholar] [CrossRef]
- Riaz, T.; Ahmad, A.; Saleemi, S.; Adrees, M.; Jamshed, F.; Hai, A.M.; Jamil, T. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal. Carbohydr. Polym. 2016, 153, 582–591. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Meng, F.; Zhang, J.; Zhao, S.; Tian, X.; Wang, L.; Chen, D.; Qi, T. Efficient separation of vanadium and chromium by the complexation with sulfate ions in solvent extraction using EHEHPA. Sep. Purif. Technol. 2025, 354, 129281. [Google Scholar] [CrossRef]
- Rim, S.A.; Amine, D.M.; Nasr-Eddine, B.; Canselier, J.P. Removal of chromium (III) by two-aqueous phases extraction. J. Hazard. Mater. 2009, 167, 896–903. [Google Scholar] [CrossRef]
- Elabbas, S.; Mandi, L.; Berrekhis, F.; Pons, M.N.; Leclerc, J.P.; Ouazzani, N. Removal of Cr (III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble. J. Environ. Manage. 2016, 166, 589–595. [Google Scholar] [CrossRef]
- Fu, D.; Wang, G.; Zhao, L.; Hong, Y.; Yang, B.; Cheng, H. Design of ion-imprinted amino-modified chitosan for selective chromium (III) ion removal. Sep. Purif. Technol. 2024, 336, 126341. [Google Scholar] [CrossRef]
- Elwakeel, K.; Elgarahy, A.; Elshoubaky, G.; Mohammad, S. Microwave assist sorption of crystal violet and Congo red dyes onto amphoteric sorbent based on upcycled Sepia shells. J. Environ. Health Sci. Eng. 2020, 18, 35–50. [Google Scholar] [CrossRef]
- Fabbricino, M.; Naviglio, B.; Tortora, G.; d’Antonio, L. An environmental friendly cycle for Cr (III) removal and recovery from tannery wastewater. J. Environ. Manag. 2013, 117, 1–6. [Google Scholar] [CrossRef]
- Aroua, M.K.; Zuki, F.M.; Sulaiman, N.M. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J. Hazard. Mater. 2007, 147, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, D.R.; Franco, D.W. Stability of phosphite coordinated to ruthenium (II) in aqueous media. Polyhedron 2014, 81, 238–244. [Google Scholar] [CrossRef]
- Gally, C.; García-Gabaldón, M.; Ortega, E.; Bernardes, A.; Pérez-Herranz, V. Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values. Sep. Purif. Technol. 2020, 238, 116421. [Google Scholar] [CrossRef]
- Menezes, P.W.; Panda, C.; Loos, S.; Bunschei-Bruns, F.; Walter, C.; Schwarze, M.; Deng, X.; Dau, H.; Driess, M. A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy Environ. Sci. 2018, 11, 1287–1298. [Google Scholar] [CrossRef]
- Zheng, C.; He, C.; Yang, Y.; Fujita, T.; Wang, G.; Yang, W. Characterization of waste amidoxime chelating resin and its reutilization performance in adsorption of Pb(II), Cu(II), Cd(II) and Zn(II) Ions. Metals 2022, 12, 149. [Google Scholar] [CrossRef]
- Abu, A.; Abdullah, N. Sorption and thermodynamic study of nitrate removal by using Amberlite IRA 900 (AI900) resin. Mater. Today Proc. 2021, 41, 102–108. [Google Scholar] [CrossRef]
- Song, Z.; Guo, K.; Bai, W.; Tang, C. Adsorption and removal of Cr (VI) from aqueous solution with amine-functionalized porous boron nitride. J. Solid State Chem. 2023, 317, 123720. [Google Scholar] [CrossRef]
- Han, S.; Zang, Y.; Gao, Y.; Yue, Q.; Zhang, P.; Kong, W.; Jin, B.; Xu, X.; Gao, B. Co-monomer polymer anion exchange resin for removing Cr (VI) contaminants: Adsorption kinetics, mechanism and performance. Sci. Total Environ. 2020, 709, 136002. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Shahriar, A.; Rahman, N.; Alam, M.Z.; Nurnabi, M. Synthesis of gamma irradiated acrylic acid-grafted-sawdust (SD-g-AAc) for trivalent chromium adsorption from aqueous solution. J. Hazard. Mater. Adv. 2024, 14, 100427. [Google Scholar] [CrossRef]
- Pietrelli, L.; Francolini, I.; Piozzi, A.; Sighicelli, M.; Silvestro, I.; Vocciante, M. Chromium (III) removal from wastewater by chitosan flakes. Appl. Sci. 2020, 10, 1925. [Google Scholar] [CrossRef]
- Lao-Luque, C.; Solé, M.; Gamisans, X.; Valderrama, C.; Dorado, A.D. Characterization of chromium (III) removal from aqueous solutions by an immature coal (leonardite). Toward a better understanding of the phenomena involved. Clean Technol. Environ. Policy 2014, 16, 127–136. [Google Scholar] [CrossRef]
- Bahsaine, K.; Mekhzoum, M.E.M.; Benzeid, H.; Qaiss, A.e.k.; Bouhfid, R. Chromium (III) adsorption from the phosphoric acid medium using DETA grafted Merrifield resin. Environ. Sci. Pollut. Res. 2023, 30, 67720–67729. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Liu, S.; Wang, C. Enhanced removal of chromium (III) for aqueous solution by EDTA modified attapulgite: Adsorption performance and mechanism. Sci. Total Environ. 2020, 720, 137391. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sultana, R.; Nurnabi, M.; Alam, M.Z. Removal of Cr (III) from tanning effluent using adsorbent prepared from peanut shell. Desalin. Water Treat. 2022, 266, 91–100. [Google Scholar] [CrossRef]
- Erçarıkcı, E.; Topcu, E.; Kıranşan, K.D. Flexible supercapacitor electrodes based on modified binary metal phosphites on three dimensional graphene sponge. J. Alloys Compd. 2023, 930, 167305. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Shao, S.; Jiao, W.; Liu, Y. High-gravity intensified preparation of D201 resin-hydrated iron oxide nanocomposites for Cr (VI) removal. Adv. Powder Technol. 2021, 32, 1584–1593. [Google Scholar] [CrossRef]
- Mohamed, H.S.; Soliman, N.; Abdelrheem, D.A.; Ramadan, A.A.; Elghandour, A.H.; Ahmed, S.A. Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent. Heliyon 2019, 5, e01287. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Hu, Y.; Ding, W.; Ren, K.; Gou, X.; Zhao, C.; Zheng, H. Simultaneous oxidation and adsorption of phosphite by magnetic La2(CO3)3/CoFe2O4/biochar composite with peroxymonosulfate. Chem. Eng. J. 2023, 451, 138918. [Google Scholar] [CrossRef]
Element | Na | Al | Cd | Mn | Zn | In | Ga | Cu | Ni | Co | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|
Concentration(mg·L−1) | 1000 | 1000 | 1500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 |
T (K) | PFO | PSO | Intra-Particle Diffusion | Qe, exp (mg/g) | |||||
---|---|---|---|---|---|---|---|---|---|
k1 (min−1) | Qe (mg/g) | R2 | k2 (g/mg/min) | Qe (mg/g) | R2 | kp | R2 | ||
298 | 0.032 | 1.2795 | 0.9549 | 0.073 | 13.65 | 0.9999 | 0.8940 | 0.9882 | 13.67 |
308 | 0.026 | 1.0988 | 0.8544 | 0.070 | 14.08 | 0.9999 | 0.8758 | 0.9829 | 14.14 |
318 | 0.020 | 1.1437 | 0.8446 | 0.069 | 14.34 | 0.9999 | 0.9195 | 0.9931 | 14.32 |
T (K) | Langmuir Isotherm | Freundlich Isotherm | Qe,exp (mg/g) | ||||
---|---|---|---|---|---|---|---|
KL (×10−5) (L/mg) | Qm (mg/g) | R2 | n | Kf (mg1−n·Ln/g) | R2 | ||
298 | 4.00 | 99.88 | 0.994 | 2.17 | 3.82 | 0.905 | 97.9854 |
308 | 3.74 | 102.00 | 0.983 | 2.29 | 4.71 | 0.918 | 99.7563 |
318 | 4.06 | 104.76 | 0.984 | 2.36 | 5.36 | 0.917 | 103.562 |
Materials | Adsorbent Dosage | Initial Ion Concentration | Qm (mg·g−1) | Ref. |
---|---|---|---|---|
Sodium phosphite and IRA-900 resin | 0.05 g/40 mL | 1000 ppm | 103.56 | This study |
SD-g-AAc(gamma irradiated acrylic acid-grafted-sawdust) | 2 g/50 mL | 800 ppm | 13.81 | [33] |
Chitosan flakes | 0.5 g/50 mL | 2000 ppm | 138.45 | [34] |
Leonardite | 0.5 g/500 mL | 500 ppm | 75.2 | [35] |
DETA grafted Merrifield resin | 0.15 g/20 mL | 300 ppm | 38.35 | [36] |
EDTA modified attapulgite | 0.02 g/50 mL | 120 ppm | 131.37 | [37] |
adsorbent from peanut shell (PNS) | 2.5 g/1000mL | 363 ppm | 104.82 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Gan, D.; Wei, G.; Yang, Y.; Wei, Q.; He, C. Adsorption of Cr(III) by IRA-900 Resin in Sodium Phosphite and Sulfuric Acid System. Separations 2025, 12, 270. https://doi.org/10.3390/separations12100270
Xu T, Gan D, Wei G, Yang Y, Wei Q, He C. Adsorption of Cr(III) by IRA-900 Resin in Sodium Phosphite and Sulfuric Acid System. Separations. 2025; 12(10):270. https://doi.org/10.3390/separations12100270
Chicago/Turabian StyleXu, Tingjie, Dahuan Gan, Guowang Wei, Yingjie Yang, Qiankun Wei, and Chunlin He. 2025. "Adsorption of Cr(III) by IRA-900 Resin in Sodium Phosphite and Sulfuric Acid System" Separations 12, no. 10: 270. https://doi.org/10.3390/separations12100270
APA StyleXu, T., Gan, D., Wei, G., Yang, Y., Wei, Q., & He, C. (2025). Adsorption of Cr(III) by IRA-900 Resin in Sodium Phosphite and Sulfuric Acid System. Separations, 12(10), 270. https://doi.org/10.3390/separations12100270